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string partition functions on these internal Calabi-Yaus previously obtained by Eguchi and

Sugawara, we construct new modular invariant, space-time supersymmetric partition func-

tions for both type II and heterotic string theories, where the GSO projection is performed

before the continuous and discrete state contributions are separated. We investigate in

detail the massless spectra of the localized modes. In particular, we propose an interesting

three generation model, in which each flavor is in the 27 ⊕ 1 representation of E6 and

localized on a four-dimensional space-time residing at the tip of the cigar.
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1. Introduction

Building phenomenologically realistic models in string theory is a challenging problem.

Among others, one of the most serious obstacles to the construction is the issue of the

moduli. Typically, we assume that the background is a product of a four-dimensional

Minkowski space and some compact Calabi-Yau manifold. Various parameters characteriz-

ing the latter appear as scalar fields in the low-energy effective theory, which are massless

until appropriate fluxes and quantum effects are taken into account. The basic question

is whether or not, and if so how, the moduli stabilization is realized dynamically. This

question is closely linked to the vacuum selection problem. With the recent recognition of

the string landscape [1], one might be satisfied if any consistent ultra-violet completion of

the Standard Model is obtained, but nothing can guarantee the uniqueness of the solution.

These difficulties stem from the complexity and diversity of compact Calabi-Yau man-

ifolds. Let us suppose that we are given a Calabi-Yau which has only a few, say three,

moduli. Then we would not need to worry about the moduli stabilization problem from

the beginning. Although there are no such known compact Calabi-Yaus, there are such

noncompact ones. A typical example is the ADE series of the ALE manifolds.

After the discovery of D-branes, the use of noncompact local Calabi-Yau manifolds has

been common — geometric engineering [2], topological string theory [3] and gauge theory [4]

— in all these examples the central focus of the study is the open string. In this paper, in

contrast, we use noncompact Calabi-Yaus as the internal sector of conventional closed string

compactification in terms of conformal field theory [5], for both type II and heterotic string

theories. We consider these superstrings in a four- (and also six-) dimensional Minkowski

space with some internal noncompact conifold-like threefold (ALE twofold) of the ADE

type, where the internal part is described [6, 7] by a tensor product of an N = 2 minimal

model with level kmin = 0, 1, 2 . . . and the noncompact coset SL(2,R)/U(1) Kazama-Suzuki

model with correlated level κ.

We present a compact expression for space-time supersymmetric, modular invariant

partition functions consisting not only of contributions from the continuous (principal uni-

tary) series representations of the mother SL(2,R) Lie algebra, but also of those from the

discrete series representations. This new space-time supersymmetric partition function is

an improvement of the earlier results in noncritical super strings or “noncompact” Gepner

models [8 – 12], and owes much to the recent construction of modular invariants for the

internal noncompact Calabi-Yau CFTs by Eguchi and Sugawara [13]. We will show, by

using the character decomposition technique [13 – 15], there are massless matter supermul-

tiplets coming from the discrete series, the number of which can be small depending on the

value of the level kmin. In particular, if we consider the E8 × E8 heterotic string compact-

ification1 for kmin = 3, we will find precisely three generations of N = 1 chiral multiplets

1We should note that in the heterotic case our construction is closely related to the “heterotic coset

models” [16] studied earlier because an N = 2 minimal model is realized [17] as an SU(2)/U(1) coset theory.
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Figure 1: The schematic picture.

in the 10 ⊕ 16 ⊕ 1 ⊕ 1 of SO(10) or 27 ⊕ 1 of E6. Since the discrete series representa-

tions in the SL(2,R)/U(1) gauged WZW model are known to be the modes localized [18]

near the tip of the “cigar” [19], these three flavors can move only in the four-dimensional

Minkowski directions, and hence are trapped on some four-manifold at the tip of the cigar.

The schematic picture is shown in figure 1.

This “brane” is not a D-brane; the localized modes are those of closed strings, which

exist even in heterotic string theories. In fact, these modes can be regarded as the position

moduli of NS5-branes. Indeed, in the six-dimensional analysis with an ALE manifold, we

will find [13] precisely as many massless supermultiplets in the discrete spectrum as the

number of two-cycles, which are D = 6 nonchiral N = 2 multiplets (including vectors) in

the type IIA case and chiral ones (including anti-selfdual tensors) in the type IIB case.

They are opposite to the zero modes appearing on NS5-branes [20] in agreement with the

T-duality [7, 21] between the NS5-brane and the ADE singularity. In the IIB case, the

S-dual version was used in the past to explain [22] the nonperturbative gauge symmetry

enhancement near the singularity [23] in terms of D-branes.2 In the four-dimensional

case, relations between a deformed conifold and a system of intersecting NS5-branes are

also known [22, 28]. We would like to emphasize that to even see geometric moduli of a

noncompact Calabi-Yau as massless modes in a modular invariant CFT partition function

has been a nontrivial problem.

The dynamics on NS5-branes in the framework of the CHS model [30, 20] was much

2The nonperturbative “W-bosons” cannot be seen in our closed string CFT partition functions. They

can, however, be analyzed [24 – 27] in the boundary Liouville CFT [29], which we do not consider in this

paper. We would like to thank Y. Sugawara for discussion on this point.

– 3 –



J
H
E
P
1
1
(
2
0
0
8
)
0
2
2

studied as “Little String Theories” (LSTs) [31]. They are basically non-critical superstring

theories [32] coupled to some compact CFT, which is a supersymmetric SU(2) WZW model

for NS5-branes. In analogy to the AdS/CFT correspondence [33], it has been proposed

that their vanishing string coupling (gs → 0) limit (and hence the decoupling gravity limit)

has some holographic dual theory on the boundary at the weakly coupled linear dilaton

region (the“mouth” of the throat). To avoid the strong-coupling singularity far down the

throat, we need a regularization in the bulk theory. There are two known ways: The first is

the so-called double-scaled Little String Theory [34, 35], that is, a particular limit of LST

where the weak string coupling limit and the limit of collapsing areas of the homology cycles

are taken in a correlated manner. In this limit, the physics depends only on a particular

combination of the coupling constant and a deformation parameter, and the scaled theory

can be weakly coupled. The second is to replace the linear-dilaton cylinder geometry with

the cigar geometry [6, 7]. Later it was shown that these two are dual to each other [34, 36].

In fact, the link between the NS5-brane and the two-dimensional black hole goes back

to the work by Gidding and Strominger (GM) [37] in 1991, where a similar double-scaling

(and, at the same time, extremal) limit of a family of type II and heterotic non-extremal

black five-brane solutions was considered to observe that the resulting geometry was a

product of a (1+ 1)-dimensional black hole, an S3 and a five-dimensional Euclidean space.

The CFT description of this geometry is very close to ours; although it is not exactly the

same (because, for instance, we consider a Euclidean black hole), it is at least suggestive. In

this GM’s double-scaling limit, despite the gs → 0 limit taken there, the graviton, dilaton

and other backgrounds do not disappear but are still present in the final geometry with

nontrivial, though finite, profiles in the whole space-time.3

As we mentioned above, our new partition functions are constructed based on the

ones for internal noncompact Calabi-Yaus obtained by [13]. Roughly speaking, what we

do is to couple the noncompact Calabi-Yau CFT to that for the flat Minkowski space

and perform a suitable GSO projection before the contributions from the continuous and

discrete series representations are separated. The states in the latter class of SL(2,R)

representations will be called the “discrete states” in short. It turns out that the formulas

are simple and similar in their form to those for the partition functions containing only the

continuous representations obtained previously. One of the virtues of our formulas is that

the couplings of the discrete states for the Calabi-Yau to states for the flat Minkowski space

are automatically consistent with the modular invariance of the continuous sector. Another

advantage is that we can straightforwardly extend the type II analysis to heterotic strings

by using the heterotic conversion procedure [5] of modular invariant partition functions. As

we noted above, we can construct an interesting three generation model, in which each flavor

consists of a 27 and a singlet of E6 and is localized on a four-dimensional space-time. Thus

this (kmin = 3) model may offer a viable alternative string model for the E6 unification [40].

Gravity and gauge fields are not localized; they are (apparently) massive due to the

Liouville energy and propagate into the bulk. They correspond to the continuous series

3With the standard embedding, this GM’s double scaling also regularizes the small instanton singular-

ity [38, 39] for heterotic five-branes.
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representations. But still, we expect that the three generation model above will be useful

for studying issues of flavors. While any particular phenomenological realization on a

compact Calabi-Yau cannot be unique, singularities occur universally in the moduli space

of any compact Calabi-Yau manifold. We hope we can capture some universal physics near

the singularity by studying the localized modes in the conformal field theory.

This is a more detailed version of [41], in which the summary of results presented here

was already announced. The plan of this paper is as follows. In section 2, we review the

basics of representation theory of the affine SL(2,R) and the associated N = 2 superconfor-

mal algebras. In section 3, we also review the previous constructions of modular invariant

partition functions in the noncompact Gepner model approach, which consists of contri-

butions from only the continuous (principal unitary) series representations. In section 4,

we construct new space-time supersymmetric, modular invariant partition functions on the

ADE generalization of conifolds, for both type II and heterotic string theories. In section 5,

we describe the detail of how to separate the discrete series contributions from the new par-

tition functions, and examine the spectrum. In particular, we propose the kmin = 3 three

generation model mentioned above. Section 6 is devoted to examples. In section 7, we

briefly discuss the generalization to the six-dimensional space-time with the ordinary ALE

manifolds. Finally, we conclude this paper with a summary and discussion, which are given

in section 8. Appendix A contains basic definitions of theta functions and characters, and

their identities. In appendix B we collect useful formulas related the functions Fl,2r(τ, z)

and F̂l,2r(τ, z) we use in the text, which are important building blocks in the construction

of the partition functions. Appendix C is a review of the heterotic conversion procedure

of Gepner. Finally, in appendix D we give a proof of the regularization formula of [14].

2. SL(2, R) paraferemions and N = 2 superconformal algebra

In this section we review the relation between the affine SL(2,R) Kac-Moody and N = 2

superconformal algebras based on the SL(2,R) parafermion construction of [42]. This is

relevant for our discussion because we construct a model by using theN = 2 representations

while the “localization of modes” is a concept that has emerged in the SL(2,R) ones.

2.1 Free field realizations

The SL(2,R) Kac-Moody currents of level κ are realized as follows:

J3(z) = i

√
κ

2
∂φ, (2.1)

J±(z) = i

(√
κ

2
∂θ ± i

√

κ− 2

2
∂ρ

)

exp

(

±i
√

2

κ
(θ − φ)

)

, (2.2)

where ρ(z), θ(z) and φ(z) are free fields satisfying the following OPEs:

ρ(z)ρ(w) ∼ − log(z − w), (2.3)

θ(z)θ(w) ∼ − log(z − w), (2.4)
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φ(z)φ(w) ∼ + log(z − w). (2.5)

The energy-momentum tensor T SL(2,R)(z) is given by

T SL(2,R)(z) = −1

2
(∂ρ)2 +

1
√

2(κ− 2)
∂2ρ− 1

2
(∂θ)2 +

1

2
(∂φ)2, (2.6)

which has a central charge

cSL(2,R) =
3κ

κ− 2
. (2.7)

The SL(2,R) parafermions ψ±(z) [42] are fundamental fields in the SL(2,R)/U(1)

coset conformal field theory. They are written in terms of the free fields as

ψ±(z) = i

(√

1

2
∂θ ± i

√

κ− 2

2κ
∂ρ

)

exp

(

±i
√

2

κ
θ

)

. (2.8)

Using these fields with another free boson ϕ [43] satisfying

ϕ(z)ϕ(w) ∼ − log(z − w), (2.9)

a set of N = 2 superconformal currents are realized as follows:

TN=2(z) = −1

2
(∂ρ)2 +

1
√

2(κ − 2)
∂2ρ− 1

2
(∂θ)2 − 1

2
(∂ϕ)2, (2.10)

G±(z) =

√

2κ

κ− 2
ψ±(z) exp

(

±i
√

κ− 2

κ
ϕ

)

, (2.11)

JN=2(z) = i

√
κ

κ− 2
∂ϕ. (2.12)

The central charge cN=2 is the same as cSL(2,R):

cN=2 =
3κ

κ− 2
. (2.13)

2.2 Unitary representations of the SL(2,R) and N = 2 superconformal algebras

A unitary module (“Fock space”) of the affine SL(2,R) Kac-Moody algebra necessarily

contains a unitary (non-affine) SL(2,R) algebra module at the lowest L
SL(2,R)
0 level. The

states in the module are labeled by the eigenvalues of J3
0 and

J =
1

2
(J+

0 J
−
0 + J−

0 J
+
0 ) − (J3

0 )2. (2.14)

Let us denote4 such an eigenstate by

|l,m+ ǫ > (m ∈ Z, 0 ≤ ǫ < 1) , (2.15)

4We consider the universal cover of SL(2, R).
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where

J3
0 |l,m+ ǫ > = (m+ ǫ)|l,m+ ǫ >, (2.16)

J±
0 |l,m+ ǫ > = (m+ ǫ± l)|l,m+ ǫ± 1 >, (2.17)

J |l,m+ ǫ > = −l(l − 1)|l,m + ǫ > . (2.18)

A state |l,m+ ǫ > corresponds to a vertex operator

|l,m+ ǫ > → e

q
2

κ−2
lρ+i

q
2
κ
(m+ǫ)(θ−φ)

(2.19)

in the free field realization of the affine SL(2,R) Kac-Moody algebra. It has a conformal

weight

L
SL(2,R)
0 = − l

2 − l

κ− 2
, (2.20)

J3
0 = m+ ǫ. (2.21)

The corresponding N = 2 vertex operator is then given by

→ e

q
2

κ−2
lρ+i

q
2
κ
(m+ǫ)θ+i

q
2
κ
(m+ǫ)ϕ

, (2.22)

which is a primary field with eigenvalues

LN=2
0 =

−(l2 − l) + (m+ ǫ)2

κ− 2
(≡ h), (2.23)

JN=2
0 =

−2(m+ ǫ)

κ− 2
(≡ Q). (2.24)

The point is that [42] each individual state |l,m + ǫ > in a unitary representation of the

non-affine SL(2,R) algebra corresponds to a unitary representation of the N = 2 super-

conformal algebra. We will consider each class of representations separately.

(i) The principal unitary series (The “continuous series”). The representation space in

this class consists of a set of states

{|l,m+ ǫ > | m ∈ Z} (2.25)

for some l = 1
2 + ip, p ∈ R and 0 ≤ ǫ < 1. There is neither upper nor lower J3

0 bound

in the states. The corresponding N = 2 representation has

h =
1

κ− 2

(

p2 +
1

4
+ (m+ ǫ)2

)

, (2.26)

Q = −2(m+ ǫ)

κ− 2
. (2.27)

Eliminating m+ ǫ, we obtain a family of parabola

h =
κ− 2

4
Q2 +

1

κ− 2

(

p2 +
1

4

)

(2.28)

labeled by p ∈ R on the (h,Q)-plane. They are shown in blue in figure 2. Throughout

this paper, the term “continuous series” will refer to this class of representations.

– 7 –
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Figure 2: The unitary region of the N = 2 superconformal algebra [44] (c = 9, NS sector).

(ii) The discrete series D+
n (n = 0, 1, . . .). The representation space consists of states

|l,m+ ǫ > such that, for a given n,

l = n+ ǫ, (2.29)

m+ ǫ = n+ ǫ+ r (r = 0, 1, 2, . . .). (2.30)

The representation D+
n has a lowest-J3

0 state

|l,m+ ǫ > = |n+ ǫ, n+ ǫ > . (2.31)

The values of h and Q of the corresponding N = 2 representations are

h =
1

κ− 2

(
(2r + 1)(n + ǫ) + r2

)
, (2.32)

Q = − 2

κ− 2
(n+ ǫ+ r). (2.33)

Eliminating n+ ǫ from above, we obtain

h = −
(

r +
1

2

)

Q− 1

κ− 2

((

r +
1

2

)2

− 1

4

)

(r = 0, 1, 2, . . .). (2.34)

They are precisely the left half of the family of segments which bound the unitary

region on the (h,Q)-plane. They are shown in red lines in figure 2.

(iii) The discrete series D−
n (n = 1, 2, . . .). The representation space of D−

n consists of

|l,m+ ǫ > such that

l = n− ǫ, (2.35)

– 8 –
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m+ ǫ = −n+ ǫ− r (r = 0, 1, 2, . . .), (2.36)

among which

|l,m+ ǫ > = |n− ǫ,−n+ ǫ > (2.37)

is the highest-J3
0 state. The corresponding h and Q are similarly

h =
1

κ− 2

(
(2r + 1)(n − ǫ) + r2

)
, (2.38)

Q = +
2

κ− 2
(n− ǫ+ r), (2.39)

and therefore

h = +

(

r +
1

2

)

Q− 1

κ− 2

((

r +
1

2

)2

− 1

4

)

(r = 0, 1, 2, . . .). (2.40)

They are the right half of the family of the segments. They are also shown in red lines.

(iv) The complimentary series. The complimentary series is similar to the principal uni-

tary series, but in this case l and ǫ satisfy (0 ≤ ǫ < 1)

−ǫ(ǫ− 1) ≤ −l(l − 1) <
1

4
. (2.41)

The upper bound of J

−l(l − 1) =
1

4
(2.42)

coincides with the principal unitary series with p = 0, while the lower bound

−l(l − 1) = −ǫ(ǫ− 1) (2.43)

the N = 2 representations which arise from the states in D+
n=0∪D−

n=1. Therefore, the

complimentary series fill the gap between the paraboloid of the p = 0 principal uni-

tary series and the polygonal boundary of the discrete series representations. They

are shown in figure 2 as the narrow yellow region between the blue area and the red

segments.

Although this class of representations is much like the principal unitary series with

continuous spectra, they do not arise in our model.

(v) The trivial (identity) representation. It gives rise to the identity representation

h = 0, Q = 0 (2.44)

of the N = 2 superconformal algebra.

3. Noncompact Gepner models

In this section we review the old noncompact Gepner model constructions and address

their issues.
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3.1 Modular invariant partition functions

In usual Gepner models [5], one uses a tensor product of N = 2 minimal superconformal

field theories so that their central charge add up to nine for compactification to four di-

mensions. They are subject to an orbifold projection, which is implemented by taking an

alternating sum over shifted indices of theta functions in the minimal characters. This is

called the “β-method” [45], with which one can achieve both an integral total U(1) charge

and modular invariance. In modern terminology, it is equivalent to consider spectral flow

orbits with respect to the N = 2 U(1) charge.

The N = 2 minimal models are labeled by a nonnegative integer level kmin and have

central charges cmin = 3kmin
kmin+2 , which do not exceed three. Therefore, we need at least four

minimal models to have nine. In [8], an attempt was made to construct a supersymmetric

modular invariant partition function by using c = 9 characters directly, with no minimal

models. Such representations are necessarily nonminimal ones. A generic (and hence

nonminimal) N = 2 character of a representation with a highest weight LN=2
0 = h, JN=2

0 =

Q is given by [46]

TrNS q
LN=2

0 yJN=2
0 = qh+ 1

8 yQϑ3(τ, z)

η3(τ)
(3.1)

for the NS sector, and

TrR qLN=2
0 yJN=2

0 = qh+ 1
8 yQϑ2(τ, z)

η3(τ)
(3.2)

for the R sector. The definitions of theta functions, as well as other functions used below,

are summarized in appendix A. To improve the modular property of these nonminimal

characters and construct a modular invariant, the following two ideas were considered [8]:

The first is to gather infinitely many generic representations with different U(1) charges

aligned on a lattice, so that the infinite sum produces another theta function. The second

idea is to integrate over the continuous spectrum of generic characters with a Gaussian

weight with respect to the Liouville momentum p (2.28). For reasons that will be explained

below, we use level-1 theta functions for the first idea. Then, taking into account the

Gaussian integration, we have roughly

1√
τ2

∣
∣
∣
∣

Θ∗,1Θ∗,2
η3

∣
∣
∣
∣

2

, (3.3)

which has modular weight (0, 0).

Next, to achieve spacetime supersymmetry, we need a GSO projection. We have

two level-2 theta functions, one from the complex fermion for the flat two-dimensional

transverse space and the other from the N = 2 character above. The β-method tells us

how to construct good combinations of theta functions. That is, we consider an alternating

summation of the form

∑

ν

(−1)νΘm+β0ν,kΘs1+β1ν,2Θs2+β2ν,2 (3.4)

– 10 –
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with the “β-conditions” [5]:

β2
0

2k
+
β2

1

4
+
β2

2

4
= 1, (3.5)

β0m

2k
+
β1s1

4
+
β2s2

4
=

1

2
. (3.6)

The solution is k = 1, (β0, β1, β2) = (1, 1, 1) and (m, s1, s2) = (1, 0, 0) or (0, 0, 2). Indeed,

if we define

Λ1(τ, z) ≡ 2
∑

ν∈Z4

(−1)νΘ1+ν,1(τ, 2z)Θν,2(τ, z)Θν,2(τ, z)

= Θ1,1(τ, 2z)
(

ϑ2
3(τ, z) + ϑ2

4(τ, z)
)

− Θ0,1(τ, 2z)
(

ϑ2
2(τ, z) + ϑ̃2

1(τ, z)
)

, (3.7)

Λ2(τ, z) ≡ 2
∑

ν∈Z4

(−1)νΘν,1(τ, 2z)Θν,2(τ, z)Θ2+ν,2(τ, z)

= Θ0,1(τ, 2z)
(

ϑ2
3(τ, z) − ϑ2

4(τ, z)
)

− Θ1,1(τ, 2z)
(

ϑ2
2(τ, z) − ϑ̃2

1(τ, z)
)

, (3.8)

then their modular transformations are [8]

Λ1(τ + 1, 0) = i Λ1(τ, 0),

Λ2(τ + 1, 0) = −Λ2(τ, 0), (3.9)

and

Λ1

(

−1

τ
, 0

)

=
τ3/2e−

3πi
4√

2
(−Λ1(τ, 0) + Λ2(τ, 0)) ,

Λ2

(

−1

τ
, 0

)

=
τ3/2e−

3πi
4√

2
(+Λ1(τ, 0) + Λ2(τ, 0)) . (3.10)

Therefore

|Λ1(τ, 0)|2 + |Λ2(τ, 0)|2

|η3(τ)|2
(3.11)

is modular invariant. In fact, the functions Λ1(τ, z) and Λ2(τ, z) vanishes identically for

whatever value of z, and hence play the role of Jacobi’s quartic identity in the ordinary

ten-dimensional critical superstring theories. Λ1 was used long time ago [47], and Λ2 was

derived in [8] by a modular transformation. It was clarified [13] that these (identically zero)

functions, as well as more general combinations of theta functions and the N = 2 minimal

characters, were derived from Jacobi’s identity through compositions of theta functions.

Using (3.11), we can write a modular invariant

Z =

∫
dτdτ

Imτ
(Imτ)−2 |η(τ)|−4 (Imτ)−

1
2 |η(τ)|−2 |Λ1(τ, 0)|2 + |Λ2(τ, 0)|2

|η3(τ)|2
, (3.12)

where the factor (Imτ)−
1
2 comes from the Liouville momentum integration, and |η(τ)|−2

from the transverse fermions. The transverse fermion thetas are contained in Λ’s.
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3.2 The link to singular Calabi-Yaus

The modular invariant (3.12) is regarded as a partition function of type II strings “com-

pactified” on the conifold [6, 7]. The defining equation of the (deformed) conifold is [48]

z2
1 + z2

2 + z2
3 + z2

4 = µ (3.13)

in C4 with a deformation constant µ. If we view (3.13) as an equation in inhomogeneous

coordinates of some weighted projective space, we may recover the homogeneous expression

−µz−1
0 + z2

1 + z2
2 + z2

3 + z2
4 = 0, (3.14)

where the negative power of z0 is determined by the Calabi-Yau condition. According

to the well-known relation between the Landau-Ginzburg potential and the level of the

minimal model [49, 50], the first term suggests that the (deformed) conifold is described

by the level-(−1−2 = −3) minimal model, which was interpreted [51, 6, 7]5 ,6 as the level-

(+3) SL(2,R)/U(1) Kazama-Suzuki model [53] which has c = 9. Prior to this, the circle of

connections between the the topological string near the conifold limit, twisted SU(2)/U(1)

coset at level-(−3), the c = 1 string at the self-dual radius and matrix models had been

noted [51, 54 – 58].

The ADE singularity of a Calabi-Yau twofold [59] can be considered similarly [7]. The

Xn singularity (X = A,D or E) is defined by an algebraic equation

WXn(z1, z2, z3) = 0 (3.15)

in C3, where

WAn(z1, z2, z3) ≡ zn+1
1 + z2

2 + z2
3 , (3.16)

WDn(z1, z2, z3) ≡ zn−1
1 + z1z

2
2 + z2

3 , (3.17)

WE6(z1, z2, z3) ≡ z4
1 + z3

2 + z2
3 , (3.18)

WE7(z1, z2, z3) ≡ z3
1z2 + z3

2 + z2
3 , (3.19)

WE6(z1, z2, z3) ≡ z5
1 + z3

2 + z2
3 . (3.20)

The singularity equation (3.15) is similarly deformed to

WXn(z1, z2, z3) = µz
−h∨(Xn)
0 , (3.21)

where h∨(Xn) is the (dual) Coxeter number of the Lie algebras h∨ = n+ 1, 2(n− 1), 12, 18

and 30 for Xn = An, Dn, E6, E7 and E8, respectively. Again, (3.21) is understood as an

equation in some weighted projective space specified by the weight of z0, which is deter-

mined by the Calabi-Yau condition. (3.21) indicates that the deformed ADE singularities

are described by the SL(2,R)/U(1) Kazama-Suzuki model of level (h∨ + 2) coupled to the

5In these references the Kac-Moody level was denoted by k. Note that we denote this by κ while we

differently use k meaning k = κ − 2 in this paper, following the notation of [13].
6See however [52] for possible subtleties in the connection between noncompact CFTs and Calabi-Yau

geometries.
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level (h∨ − 2) N = 2 minimal model of the corresponding modular invariant type. It was

also argued by using the character identity (A.19) [5] that the ADE singularity was T-dual

to the NS5-brane.

The corresponding modular invariant partition functions for type II strings “compact-

ified” on these noncompact manifolds, as well as on similar ADE generalizations of the

conifold, were constructed in [13] by using the generic noncompact N = 2 characters,

where it was revealed that the relevant spectral flow orbits which constituted the parti-

tion function were actually obtained in a unified way by composing the theta functions in

Jacobi’s identity. Namely, in the twofold case, the authors of [13] defined the functions

Fl(τ, z) ≡ 1

2
χ

(kmin)
l (τ, 0)

(

ϑ4
3 − ϑ4

4 − ϑ4
2 + ϑ̃4

1

)

(τ, z)

=
∑

ν∈Z4

(−1)ν
∑

m∈Z2(kmin+2)

χl,ν
m (τ,−z)

∑

ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

Θ2ν0+ν,2(τ, z)Θ2ν1+ν,2(τ, z)

· Θ2ν2+ν,2(τ, z)Θm,kmin+2

(

τ,
2z

kmin + 2

)

(3.22)

for l = 0, . . . , kmin, where the familiar character identity (A.19) [5, 7] was used. The second

line enables us to identify Fl(τ, z) as a spectral flow orbit of a system consisting of the

level-kmin, N = 2 minimal model, two complex fermions and a noncompact N = 2 CFT

with some appropriate U(1)-charge lattice. Therefore, we can write

Z =

∫
dτdτ

Imτ
(Imτ)−3

∣
∣η−4(τ)

∣
∣
2
(Imτ)−

1
2

∣
∣η−2(τ)

∣
∣
2∑

l,l̃

Nl,l̃

Fl(τ, 0)(Fl̃(τ, 0))
∗

|η3(τ)|2

=

∫
dτdτ

(Imτ)2
(Imτ)−

5
2

∣
∣η−5(τ)

∣
∣
2∑

l,l̃

Nl,l̃

Fl(τ, 0)(Fl̃(τ, 0))
∗

|η4(τ)|2
, (3.23)

which is clearly modular invariant. This was regarded as a supersymmetric partition func-

tion modeling a deformed ADE singularity (3.21) with a six-dimensional Minkowski space.

In the threefold case, the relevant building blocks are

Fl,2r(τ, z) ≡ 1

4

∑

m∈Z4(kmin+2)

(

(ϑ3(τ, z))
2chNS

l,m(τ, z) − (−1)r−
m
2 (ϑ4(τ, z))

2ch
fNS
l,m(τ, z)

− (ϑ2(τ, z))
2chR

l,m(τ, z) + (−1)r−
m
2

+ 1
2 (ϑ̃1(τ, z))

2ch
eR
l,m(τ, z)

)

· Θ(kmin+2)2r−(kmin+4)m,2(kmin+2)(kmin+4)

(

τ, z
kmin+2

)

(3.24)

for r ∈ Zkmin+4 + l
2 . As we explain in appendix, this Fl,2r(τ, z) is derived from Jacobi’s

identity and satisfies

1

4
χ

(kmin)
l (τ, 0)(ϑ4

3 − ϑ4
4 − ϑ4

2 − ϑ̃4
1)(τ, z) =

∑

r∈Zkmin+4+ l
2

Fl,2r(τ, z)Θ2r,kmin+4(τ, 0).(3.25)
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The modular properties of Fl,2r(τ, z) can be read off from this equation. We can similarly

write a modular invariant [13]7

Z =

∫
dτdτ

(Imτ)2
(Imτ)−

3
2 |η(τ)|−6

∑

l,l̃

∑

r∈Zkmin+4+ l
2

Nl,l̃

Fl,2r(τ, 0)(Fl̃,2r(τ, 0))
∗

|η3(τ)|2
, (3.26)

which can be regarded as the type II partition function for the ADE generalization of the

conifold

WXn(z1, z2, z3) + z2
4 = 0, (3.27)

which is deformed to

WXn(z1, z2, z3) + z2
4 = µz

− 2h(Xn)
h(Xn)+2

0 . (3.28)

Since the level of theN = 2 minimal model is kmin = h(Xn)−2, the level of the noncompact

N = 2 CFT is

κ =
2h(Xn)

h(Xn) + 2
+ 2

=
2(kmin + 2)

kmin + 4
+ 2. (3.29)

For the E8 × E8 and SO(32) heterotic string theories, modular invariant partition

functions on Rd−1,1 (d = 6, 4, 2) with only the continuous contributions have also been

constructed in the second reference of [11]. (The d = 0 case had been considered in [60]

prior to that.)

3.3 Absence of localized modes

The spectrum of the c = 9, N = 2 representations used in the partition function (3.12) is

shown in figure 3. What is nontrivial here is that [8] the level-1 U(1) theta functions deter-

mined by modular invariance and supersymmetry are consistent with unitarity. That is,

the envelope of the lowest ends of the continuous spectra, which are set by the level-1 theta

functions, coincides exactly with the lowest L0 bound of possible N = 2 representations

corresponding to the continuous series of SL(2,R).

By construction, there are only the representations coming from the continuous series

of SL(2,R). The graviton is massive due to the Liouville energy [61]. All the modes

have continuous Liouville momenta and propagate into the extra dimension (that is, the

Liouville direction). There are no localized massless modes.8 This is also the case for the

partition functions for the ADE singularity obtained in [13, 11]; they do not reflect the

geometry in their massless spectrum [10].

7For simplicity, we take the coefficients of the modular invariant theta system Mkmin
r,r′ [43] to be diagonal.

8There is a subtlety associated with the gapless spectrum. The appearance of this is the common feature

of the spectrum for even kmin, the level of the N = 2 minimal model coupled in the generalized models.

See section 5.6.
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Figure 3: The spectrum of the c = 9, N = 2 representations in the old conifold partition function

(NS sector). The green lines at odd (even) Q are the spectrum of representations contributing to

Λ1 (Λ2).

In [13], new modular invariant partition functions including contributions from both

the continuous and discrete series representations have been constructed for noncompact

Calabi-Yau manifolds with an isolated singularity. (See also [62] for more recent related

works.) They obtained them via the path-integral approach. They used the character

decomposition technique developed in different but similar models [14, 15] to show the

existence of the localized modes. In particular, they found [13] the correct chiral ring

structures expected from the geometry of the ALE manifolds.

In the next section, based on this result, we construct spacetime supersymmetric par-

tition functions (that is, the ones in which the fermions for the four-dimensional Minkowski

space are coupled and GSO-projected before the continuous and discrete representations are

separated) on the conifold-type threefolds for type II strings, and also for heterotic strings.

4. Partition functions of superstrings on noncompact singular Calabi-Yau

threefolds

We start with the toroidal partition function of the SL(2,R)/U(1) Kazama-Suzuki

model [13]

Z
(NS)
CY (τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

|ϑ3(τ, s1τ − s2)|2
|ϑ1(τ, s1τ − s2)|2

∑

v,w∈Z

e
− kπ

τ2
|(w+s1)τ−(v+s2)|2

. (4.1)
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This expression was obtained by a path integration [14, 15, 63 – 65] in the H+
3 /R gauged

WZW model coupled to fermions. The detail of the derivation of (4.1) can be found

in appendix C of ref. [13]. The partition functions for other spin structures Z
(fNS)
CY (τ),

Z
(R)
CY (τ) and Z

(eR)
CY (τ) are given by similar expressions with ϑ3 replaced by ϑ4, ϑ2 and ϑ1,

respectively. The overall constant C depends on the definition of the path integral measure

and is arbitrary at this point, but later, after the discrete series contributions are separated,

it is chosen to be 4k so that the discrete states partition function becomes a polynomial

of q with integer coefficients. We should note that (4.1) is a formal expression because the

s1- and s2-integrations diverge near s1 = s2 = 0, and hence need a regularization when we

discuss the spectrum later.

By a Poisson resummation we may write

∑

v,w∈Z

e
− kπ

τ2
|(w+s1)τ−(v+s2)|2

=
∑

n,w∈Z

e−πτ2
(

n2

k
+k(s1+w)2

)
−2πin((s1+w)τ1−s2)

=

√
τ2
k

∑

m,m̃

e−kπτ2s2
1q

m2

k e−2πim(s1τ−s2)q̄
m̃2

k e+2πim̃(s1τ̄−s2), (4.2)

where m = n−kw
2 , m̃ = −n+kw

2 . They run over an appropriate direct sum of orthogonal

lattices determined by n,w ∈ Z.

k =
2(kmin + 2)

kmin + 4
(kmin = 0, 1, 2, . . .). (4.3)

4.1 kmin = 0: the conifold

To get insight into how the GSO projection is accomplished before separating the contin-

uous and discrete series representations, we consider the kmin = 0 (k = 1) case first.

If k = 1, (4.2) becomes

(4.2) =
√
τ2

∑

m, m̃ ∈ Z

m = m̃ mod 2

e−πτ2s2
1qm2

e−2πim(s1τ−s2)q̄m̃2
e+2πim̃(s1τ̄−s2) (4.4)

=
√
τ2
∑

ν∈Z2

e−πτ2s2
1Θν,1(τ, s2 − s1τ) (Θν,1(τ, s2 − s1τ))

∗ . (4.5)

The level-1 theta functions are precisely the ones which are used to construct a modular

invariant partition function on the conifold consisting of only continuous series representa-

tions. This leads us to define, generalizing the continuous series result, the new functions

Λ̂1(τ, z)≡Θ1,1(τ, z)
(

ϑ3(τ, z)ϑ3(τ, 0)+ϑ4(τ, z)ϑ4(τ, 0)
)

−Θ0,1(τ, z) ϑ2(τ, z)ϑ2(τ, 0), (4.6)

Λ̂2(τ, z)≡Θ0,1(τ, z)
(

ϑ3(τ, z)ϑ3(τ, 0)−ϑ4(τ, z)ϑ4(τ, 0)
)

−Θ1,1(τ, z) ϑ2(τ, z)ϑ2(τ, 0) (4.7)

and write

ZM4×conifold(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2(qq)

s21
4

∣
∣
∣Λ̂1(τ, s1τ − s2)

∣
∣
∣

2
+
∣
∣
∣Λ̂2(τ, s1τ − s2)

∣
∣
∣

2

|η(τ)|2|ϑ1(τ, s1τ − s2)|2
, (4.8)
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where τ = τ1 + iτ2.

By definition of Λ̂1 and Λ̂2, we see that ZM4×conifold(τ) is a partition function for the

N = 2 CFT for the conifold coupled to a complex fermion for the transverse space, with a

GSO projection performed before the discrete series representations are separated.

Including the four-dimensional boson contributions, we obtain the full modular invari-

ant partition function of type II strings on the conifold

Z full
M4×conifold =

∫
dτdτ̄

τ2

1

τ2
2 |η2(τ)|2ZM4×conifold(τ). (4.9)

In the following we will show that Z full
M4×conifold:

(i) is modular invariant.

(ii) reduces to (3.12) if, after a certain regularization, divided by a divergent volume

factor.

(iii) also contains contributions from the discrete series of SL(2,R), which transform as

four-dimensional N = 2 hyper/vector multiplets in type IIA/IIB string compactifi-

cations.

Here we note that, in going from (4.5) to (4.8), we have extended the summation region

of (n,w) from (Z,Z) to (Z,Z)⊕(Z+ 1
2 ,Z+ 1

2) to have a supersymmetric partition function.

This is because we need Θν,1(τ, s2 − s1τ)(Θν̃,1(τ, s2 − s1τ))
∗ with νν̃ = odd in order to

contain spacetime fermions. Therefore, we assume that n and w are allowed to take values

in Z+ 1
2 as well as in Z. We also note that the particular z-dependence of the functions Λ̂1

and Λ̂2 is crucial to the construction, and is different from (3.7), (3.8) which are obtained

by a composition of level-2 theta functions in Jacobi’s quartic identity. (See appendix.)

4.2 Modular invariance of the type II conifold partition function

We first prove the modular S-invariance of (4.8). The following modular S-properties are

well-known:

τ2 → τ2
|τ |2 , (4.10)

η(τ) → η

(

−1

τ

)

=
√
−iτ η(τ). (4.11)

Also it is easy to see that

(qq̄)
s21
4 → (qq̄)

(1−s2)2

4

∣
∣
∣
∣
∣
e
−πi

2

„
τ(1−s2)2+

s21
τ

«∣
∣
∣
∣
∣

2

. (4.12)

On the other hand, we have the following relation in general:

ΘM,K

(

τ,
s1τ − s2

−a

)
τ→− 1

τ→ e
Kiπ

2a2

„
s21
τ

+τ(1−s2)2+2(s1s2−s1)

«

(4.13)

·
√

τ

2Ki

∑

M ′∈Z2K

e−
MM′

K
πiΘM ′+ K

a
,K

(

τ,
(1 − s2)τ − s1

−a

)
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for any divisor a of a positive integer K. Comparing (4.13) with

ΘM,K (τ, 0)
τ→− 1

τ→
√

τ

2Ki

∑

M ′∈Z2K

e−
MM′

K
πiΘM ′,K (τ, 0) , (4.14)

we see that ΘM,K

(

τ, s1τ−s2
−a

)

undergoes the following additional changes:

• The exponential factor.

• The replacement (s1, s2) → (1 − s2, s1).

• The shift in the first subscript of the theta function (“spectral flow”).

Using (4.13), we find

ϑ1(τ, s1τ − s2) → −e
πi

„
s21
τ

+τ(1−s2)2+2(s1s2−s1)

«

ϑ1 (τ, (1 − s2)τ − s1) , (4.15)

Θm,1(τ, s1τ − s2) → e
1
2
πi

„
s21
τ

+τ(1−s2)2+2(s1s2−s1)

«
∑

m′∈Z2

e−mm′πiΘm′−1,1 (τ, (1 − s2)τ − s1) ,

(4.16)

Θs,2(τ, s1τ − s2) → e
πi

„
s21
τ

+τ(1−s2)2+2(s1s2−s1)

«
∑

s′∈Z4

e−
ss′

4
πiΘs−2,2 (τ, (1−s2)τ−s1) . (4.17)

Since 2πi(s1s2 − s1) is pure imaginary, it is irrelevant if the absolute value is taken. Then

the exponential factors of e
const.×πi

„
s21
τ

+τ(1−s2)2
«

arising from various factors of (4.8) cancel

out. The replacement (s1, s2) → (1 − s2, s1) acts trivially on
∫ 1
0 s1

∫ 1
0 s2. Therefore, since

|Λ1(τ, 0)|2 + |Λ2(τ, 0)|2
|η3(τ)|2 (4.18)

is modular invariant, we have only to worry about the shift of m′ and s′ in the theta

functions in Λ̂1 and Λ̂2. It turns out that they simply amount to the permutation

Λ̂1 → Λ̂2, (4.19)

Λ̂2 → Λ̂1, (4.20)

which obviously preserves (4.8). Thus we have proved that ZM4×conifold(τ) is modular

S-invariant.

The proof of the modular T -invariance is easier. Since

Λ̂1(τ + 1, z) = iΛ̂1(τ, z), (4.21)

Λ̂1(τ + 1, z) = −Λ̂2(τ, z) (4.22)

hold independently of z, all we need to do is to examine the effect of the change of s1τ−s2,
which amounts to a change of variables (s1, s2) → (s1, s2 − s1). In fact, the integrand of
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ZM4×conifold(τ) (4.8) is periodic (with a period of 1) in s2, so the integral is invariant under

the change of variables. Thus ZM4×conifold(τ) is also T -invariant.

Again, we note that this proof for the modular invariance is a formal one because

ZM4×conifold(τ) (as well as ZM4×CY (Xn)(τ) in the next section) is a divergent quantity. In

section 5.3, we introduce a regularization which is not modular invariant. The situation is

reminiscent of anomalies in gauge theory; when the continuous and discrete contributions

are separated after the regularization, the continuous piece forms a modular invariant while

the discrete one does not close under modular transformations. The number of massless

discrete states should not depend on how the partition function is regularized since it

reflects the moduli of the noncompact Calabi-Yau (or the NS5-branes), as we see in the

subsequent sections.

4.3 Type II string partition functions for general k

In this section, we extend the discussion for the conifold to more general singularities in

which a nontrivial N = 2 minimal model with a general non-negative integer level kmin is

coupled to the noncompact N = 2 coset theory.

The expression of the new partition function for the conifold ZM4×conifold(τ) (4.8) is

very suggestive; it is similar in form to the old partition function (3.11). In particular, the

alternating sum is realized in similar functions Λi(τ, z) (i = 1, 2) and Λ̂i(τ, z) (i = 1, 2),

which differ only in the z-dependences. This motivates us to define

F̂l,2r(τ, z) =
1

4

∑

m∈Z4(kmin+2)

(

ϑ3(τ, 0)ϑ3(τ, z)ch
NS
l,m(τ, 0) − (−1)r−

m
2 ϑ4(τ, 0)ϑ4(τ, z)ch

fNS
l,m(τ, 0)

− ϑ2(τ, 0)ϑ2(τ, z)ch
R
l,m(τ, 0)

)

· Θ(kmin+2)2r−(kmin+4)m,2(kmin+2)(kmin+4)

(

τ, z
kmin+4

)

. (4.23)

Again, this F̂l,2r(τ, z) is obtained from Fl,2r(τ, z) (3.24), which was defined in [9] to construct

the modular invariant partition function for the ADE type conifold-like singularities with

only the continuous series representations. Remarkably, the level-2(kmin+2)(kmin+4) theta

functions are precisely the ones which appear in the U(1)-charge lattice decomposition

(4.2) =

√
τ2
k

∑

j1,j2∈Z

∑

m∈Z4(kmin+2)

∑

r∈Z2(kmin+4)

e−kπτ2s2
1

·q
kmin+4

2(kmin+2)

“
2(kmin+2)(j1−j2)+

m
2
− (kmin+2)r

kmin+4

”2

e
−2πi(s1τ−s2)

“
2(kmin+2)(j1−j2)+

m
2
− (kmin+2)r

kmin+4

”

·q̄
kmin+4

2(kmin+2)

“
2(kmin+2)(−j1−j2)−m

2
− (kmin+2)r

kmin+4

”2

e
+2πi(s1τ̄−s2)

“
2(kmin+2)(−j1−j2)−m

2
− (kmin+2)r

kmin+4

”

(4.24)

=

√
τ2
k

∑

m∈Z4(kmin+2)

∑

r∈Z2(kmin+4)

e−kπτ2s2
1
1

2

·Θ(kmin+4)m−2(kmin+2)r,2(kmin+2)(kmin+4)

(

τ,
s2 − s1τ

kmin + 4

)
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·
(

Θ−(kmin+4)m−2(kmin+2)r,2(kmin+2)(kmin+4)

(

τ,
s2 − s1τ

kmin + 4

))∗
, (4.25)

where ∗ denotes the complex conjugate. Therefore, F̂l,2r(τ, z) specifies a particular way of

GSO projection in the N = 2 minimal model, the transverse fermion and the noncompact

N = 2 coset Hilbert spaces. Using F̂l,2r(τ, z), we can similarly write a modular invariant

expression

ZM4×CY (Xn)(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2
k

(qq)
ks21
4

·
∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+ l
2

F̂l,2r(τ, s1τ − s2)
(

F̂l̃,2r(τ, s1τ − s2)
)∗

|η(τ)|2|ϑ1(τ, s1τ − s2)|2
(4.26)

for general kmin. Nl,l̃ is the coefficients of the Xn (X = A,D, or E) modular invari-

ant [66, 67]. Since Nl,l̃ vanishes if l − l̃ = 1 (mod 2) for any modular invariant, the

summation over r ∈ Zkmin+4 + l
2 is equivalent to the one over r ∈ Zkmin+4 + l̃

2 . If kmin = 0,

ZM4×CY (A1)(τ) is reduced to ZM4×conifold(τ) (4.8).

The proof of the modular invariance of ZM4×CY (Xn)(τ) is parallel to the conifold case.

Again, the only nontrivial point is the τ -dependence through the z-argument. In the present

case the modular S-transformation simply permutes F̂ ’s cyclically, and ZM4×CY (Xn)(τ) as

a whole remains invariant. The proof of the modular T -invariance is also similar.

4.4 Heterotic string partition functions for general k

Once we have a modular invariant partition function for type II strings, we can easily

convert it to one for heterotic strings by a standard procedure [5], as we review in ap-

pendix. All we need to do is replace the holomorphic F̂l,2r(τ, s1τ − s2) in (4.26) with

F̂E8×E8
l,2r (τ, s1τ−s2)/η12(τ) (C.23)–(C.27) for the E8×E8 theory, and with F̂ SO(32)(τ, s1τ−
s2)/η

12(τ) (C.28)–(C.32) for the SO(32) theory. The anti-holomorphic (F̂l̃,2r(τ, s1τ−s2))∗ is

left unchanged. Since F̂E8×E8
l,2r (τ, s1τ − s2)/η12(τ) or F̂ SO(32)(τ, s1τ − s2)/η12(τ) transforms

in the same way as F̂l,2r(τ, s1τ −s2) does, the resulting heterotic partition function is auto-

matically modular invariant. Their massless spectra will be investigated in the next section.

5. Separation of the discrete series contributions

We now separate the contributions from the discrete series representations from the parti-

tion functions obtained in the previous section. In section 5.1, we first define modules of

various algebras and describe relevant spectral flow operations in them, which are needed

later. Then we consider the separation for type II strings from section 5.2 through sec-

tion 5.6, and for heterotic strings in section 5.7.

5.1 Modules and spectral flows

• The SL(2,R) Kac-Moody algebra module HSL(2,R)
±,(h,l0)

.
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The affine SL(2,R) algebra relations are [42]

[J3
n, J3

m] = −κ
2
nδn,−m, (5.1)

[J3
n, J±

m] = ±J±
n+m, (5.2)

[J+
n , J−

m] = −κnδn,−m + 2J3
n+m (5.3)

for n, m ∈ Z, where

κ = k + 2. (5.4)

The Virasoro generators are

L
SL(2,R)
0 =

1

2(κ− 2)

(

J+
0 J

−
0 + J−

0 J
+
0 − 2(J3

0 )2

+2

∞∑

m=1

(
J+
−mJ

−
m + J−

−mJ
+
m − 2J3

−mJ
3
m

)

)

,

LSL(2,R)
n =

1

2(κ− 2)

∞∑

−∞

(
J+
−mJ

−
m + J−

−mJ
+
m − 2J3

−mJ
3
m

)
. (5.5)

We define HSL(2,R)
±,(h,l0)

as an SL(2,R) Kac-Moody algebra module generated from a state

|h, l0〉 such that

L
SL(2,R)
0 |h, l0〉 = h|h, l0〉, (5.6)

J3
0 |h, l0〉 = l0|h, l0〉, (5.7)

LSL(2,R)
n |h, l0〉 = J3

n|h, l0〉 = J+
n |h, l0〉 = J−

n |h, l0〉 = 0, (n > 0) (5.8)

J∓
0 |h, l0〉 = 0. (5.9)

The character for a generic representation is given by

TrHSL(2,R)
±,(h,l0)

qL
SL(2,R)
0 yJ3

0 =
±iq 1

8
+hy∓

1
2
+l0

ϑ1(τ, z)
. (5.10)

Let us define the spectral-flow operation

J±
n = J̃±

n∓w, (5.11)

J3
n = J̃3

n +
κw

2
δn,0, (5.12)

LSL(2,R)
n = L̃SL(2,R)

n − wJ̃3
n − κw2

4
δn,0, (5.13)

then the tilde generators also satisfy the same algebra relations as those without

tildes, so it is an isomorphism. In particular, if we set w = 1, then

J−
0 = J̃−

1 , (5.14)

J+
1 = J̃+

0 , (5.15)
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and HSL(2,R)
+,(h,l0)

as a module generated by Jn’s can be identified to be HSL(2,R)
−,(h+l0−κ

4
,l0−κ

2
) as

a module generated by J̃n’s. Therefore, for any function f(L
SL(2,R)
0 , J3

0 ), the following

equation holds true:

TrHSL(2,R)
+,(h,l0)

f
(

L
SL(2,R)
0 , J3

0

)

= TrHSL(2,R)

−,(h+l0−
κ
4 ,l0−

κ
2 )

f
(

L̃
SL(2,R)
0 −J̃3

0 −
κ

4
, J̃3

0 +
κ

2

)

. (5.16)

• The free fermion module Hν,2 (ν ∈ Z4).

The complex fermion algebra is generated by ψ±
r , where r ∈ Z + 1

2 in the NS sector

and r ∈ Z in the Ramond sector, with the relations

{ψ+
r , ψ

+
s } = {ψ−

r , ψ
−
s } = 0, (5.17)

{ψ+
r , ψ

−
s } = {ψ−

r , ψ
+
s } = δr,−s. (5.18)

The L0 and fermion number operators are

L
(NS)
0 =

∑

r∈Z+ 1
2
,>0

r

2

(
ψ+
−rψ

−
r + ψ−

−rψ
+
r

)
, (5.19)

L
(R)
0 =

∑

r∈Z,>0

r

2

(
ψ+
−rψ

−
r + ψ−

−rψ
+
r

)
+

1

8
, (5.20)

F (NS) =
1

2

∑

r∈Z+ 1
2
,>0

(
ψ+
−rψ

−
r − ψ−

−rψ
+
r

)
, (5.21)

F (R) =
1

2
ψ+

0 ψ
−
0 +

1

2

∑

r∈Z,>0

(
ψ+
−rψ

−
r − ψ−

−rψ
+
r

)
− 1

2
. (5.22)

As usual, we introduce the NS ground state |0〉NS such that

ψ±
r |0〉NS = 0 (5.23)

for r = 1
2 ,

3
2 , . . ., and the Ramond ground state |0〉R such that

ψ+
r |0〉R = 0 (5.24)

for r = 1, 2, . . ., while

ψ−
r |0〉R = 0 (5.25)

for r = 0, 1, 2, . . .. Then

L
(NS)
0 |0〉NS = 0, (5.26)

F (NS)|0〉NS = 0, (5.27)

L
(R)
0 |0〉R =

1

8
|0〉R, (5.28)

F (R)|0〉R = −1

2
|0〉R. (5.29)
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Let us call the free fermion modules generated from these ground states H(NS) and

H(R), respectively. We also define Hν,2 (ν ∈ Z4) to be a free fermion module such that

TrHν,2q
L

(ν)
0 yF (ν)

= q
1
24

Θν,2(τ, z)

η(τ)
, (5.30)

where

L
(ν)
0 = L

(NS)
0 if ν = 0, 2, (5.31)

= L
(R)
0 if ν = ±1, (5.32)

F (ν) = F (NS) if ν = 0, 2, (5.33)

= F (R) if ν = ±1. (5.34)

Clearly, H0,2 (H2,2) consists of even (odd) F (NS) states in H(NS), and similarly H1,2

(H−1,2) consists of states with F (R) = +1
2+ even- (odd-) integer in H(R). Also

H(NS) = H0,2 ⊕H2,2, (5.35)

H(R) = H1,2 ⊕H−1,2. (5.36)

For both the NS and the Ramond sectors,

ψ±(NS,R)
r = ψ̃

±(NS,R)
r+1 (5.37)

is an isomorphism and maps H(NS) to H(NS), and H(R) to H(R). We also have, any

function f(L
(ν)
0 , F (ν)), the following equation

TrHν,2f
(

L
(ν)
0 , F (ν)

)

= TrHν+2,2f

(

L̃
(ν+2)
0 − F̃ (ν+2) +

1

2
, F̃ (ν+2) − 1

)

. (5.38)

• The free boson module Hm,K (K = 2(kmin + 2)(kmin + 4), m ∈ Z2K).

Let us consider a free scalar field φ(z) with the OPE

φ(z)φ(w) ∼ − log(z − w) (5.39)

with the energy-momentum tensor and the U(1) current

TU(1)(z) = −1

2
(∂φ(z))2, (5.40)

JU(1)(z) = i

√

K

2
∂φ(z). (5.41)

for some integer K = 2(kmin + 2)(kmin + 4). Let L
U(1)
0 and J

U(1)
0 be their zeromodes.

Then Hm,K (m ∈ Z2K) is defined to be a (reducible) free boson module such that

TrHm,K
qL

U(1)
0 yJ

U(1)
0 = q

1
24

Θm,K(τ, z)

η(τ)
, (5.42)
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and hence

TrHm,K
qL

U(1)
0 y

J
U(1)
0

kmin+4 = q
1
24

Θm,K(τ, z
kmin+4 )

η(τ)
. (5.43)

Hm,K is a direct product of free boson modules generated from the ground states

ei
√

2K(n+ m
2K

)φ(0)|0〉 (n ∈ Z), (5.44)

where |0〉 is the J
U(1)
0 = 0 ground state.

The replacement

L
U(1)
0 = L̃

U(1)
0 − J̃

U(1)
0

kmin + 4
+

kmin + 2

2(kmin + 4)
, (5.45)

J
U(1)
0 = J̃

U(1)
0 − (kmin + 2) (5.46)

is a spectral flow by 2(kmin + 2) units, and hence is an isomorphism. As before, we

have a relation

TrHm,K
f
(

L
U(1)
0 , J

U(1)
0

)

= TrHm+2(kmin+2),K
f

(

L̃
U(1)
0 − J̃

U(1)
0

kmin+4
+

kmin+2

2(kmin+4)
, J̃

U(1)
0 −(kmin+2)

)

(5.47)

for any f(L
U(1)
0 , J

U(1)
0 ).

• The N = 2 minimal superconformal algebra module H(kmin)l,s
m .

Finally, we define the N = 2 minimal superconformal algebra module H(kmin)l,s
m such

that

TrH(kmin)l,s
m

qLN=2
0 yJN=2

0 = q
cmin
24 χ(kmin)l,s

m (τ, z). (5.48)

In appendix we collect useful formulas of the N = 2 minimal characters

χ
(kmin)l,s
m (τ, z) ≡ χl,s

m (τ, z), where the kmin-dependence is suppressed for nota-

tional simplicity. We do not need spectral flow formulas for them because they do

not have the denominator U(1) charge of the gauged WZW model.

5.2 The flow-orbit representation of the partition functions

To extract the discrete series contributions from (4.26), we will write it as a trace of some

operator over appropriate modules defined in the previous subsection. First, we note that

the function Fl,2r(τ, z), introduced in [9] to construct modular invariants containing only

the continuous series, can be written as a spectral flow orbit with respect to the N = 2

U(1) charge (which is not the same as the denominator U(1) charge of the SL(2,R)/U(1)

coset counted by J tot
0 below, as emphasized in [13]), as shown in appendix. Since Fl,2r(τ, z)
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and F̂l,2r(τ, z) differ only in the z-dependences of theta functions, F̂l,2r(τ, z) can also be

expressed as a similar alternating sum (see (B.26))

F̂l,2r(τ, z) =
1

2

∑

ν∈Z4(kmin+2)

∑

ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

(−1)νχl,l−2r+2ν0+ν
l+ν (τ, 0)Θ2ν1+ν,2(τ, 0)

· Θ2ν2+ν,2(τ, z)Θ(kmin+2)2r−(kmin+4)(l+ν),2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

.

(5.49)

It motivates us to define [41]

H(ν)
Fl,2r

≡ ⊕
ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

(

H(kmin)l,l−2r+2ν0+ν
l+ν ⊗H2ν1+ν,2 ⊗H2ν2+ν,2

)

⊗ H(kmin+2)2r−(kmin+4)(l+ν),2(kmin+2)(kmin+4). (5.50)

We can then write

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2
k

(qq̄)
ks21
4

F̂l,2r(τ, s1τ − s2)
(

F̂l̃,2r(τ, s1τ − s2)
)∗

|η(τ)ϑ1(τ, s1τ − s2)|2

=

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2
k

(qq̄)
ks21
4
|η2(τ)|2

4

∑

ν,ν̃∈Z4(kmin+2)

(−1)ν+ν̃

·Tr„
HSL(2,R)

+,(0,0)
⊗H(ν)

Fl,2r

«
⊗
„
HSL(2,R)

+,(0,0)
⊗H(ν̃)

F
l̃,2r

«

· q
L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0 − 1

4
− cmin

24
+s1

 
J3
0+F (ν)+

J
U(1)
0

kmin+4
+ 1

2

!

· q̄
L̃

SL(2,R)
0 +L̃N=2

0 +L̃
(ν̃)
0 +L̃

(ν̃)
0 +L̃

U(1)
0 − 1

4
− cmin

24
+s1

 
J̃3
0+F̃ (ν̃)+

J̃
U(1)
0

kmin+4
+ 1

2

!

· e
−2πis2

 
J3
0+F (ν)+

J
U(1)
0

kmin+4
−J̃3

0−F̃ (ν̃)− J̃
U(1)
0

kmin+4

!

. (5.51)

The s2 integral yields a constraint

(J tot
0 ≡) J3

0 + F (ν) +
J

U(1)
0

kmin + 4
= J̃3

0 + F̃ (ν̃) +
J̃

U(1)
0

kmin + 4
(≡ J̃ tot

0 ). (5.52)

Using the Fourier transformation

√
τ2
k

(qq̄)
ks21
4 =

1

k

∫ ∞

−∞
dc e

− π
kτ2

c2−2πics1 , (5.53)

we can perform the s1 integral as

=
|η2(τ)|2

4k

∫ ∞

−∞
dp

∑

ν,ν̃∈Z4(kmin+2)

(−1)ν+ν̃Tr„
HSL(2,R)

+,(0,0)
⊗H(ν)

Fl,2r

«
×
„
HSL(2,R)

+,(0,0)
⊗H(ν̃)

F
l̃,2r̃

«
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·qL
SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0 − 1

4
− cmin

24 q̄L̃
SL(2,R)
0 +L̃N=2

0 +L̃
(ν̃)
0 +L̃

(ν̃)
0 +L̃

U(1)
0 − 1

4
− cmin

24

·(qq̄)
1
k (p+ ik

2 )
2
+Jtot

0 + k+2
4 − (qq̄)

p2

k

−2π(ip + J tot
0 + 1

2 )
, (5.54)

where we set c = 2τ2p.

The first term of the numerator contains J tot
0 in its exponent. If we use the isomor-

phisms of various modules in the previous section, we can eliminate this J tot
0 dependence,

and also the module over which the first trace is taken changes from HSL(2,R)
+,(0,0) ⊗H(ν)

Fl,2r
to

HSL(2,R)
−,(−κ

4
,−κ

2
) ⊗H(ν)

Fl,2(r+1)
(κ = k + 2), and similarly in the anti-holomorphic sector:

(5.51) =
|η2(τ)|2

4k

∑

ν,ν̃∈Z4(kmin+2)

(−1)ν+ν̃

·
(

Tr„
HSL(2,R)

−,(−κ
4 ,−κ

2 )
⊗H(ν)

Fl,2(r+1)

«
⊗
„
HSL(2,R)

−,(−κ
4 ,−κ

2 )
H(ν̃)

Fl,2(r+1)

«

·
∫ ∞

−∞

dp

−2π(ip + J tot
0 + 1

2)
q

1
k
(p+ ik

2
)2− 1

4
− cmin

24
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0 + κ

4

· q̄ 1
k
(p+ ik

2
)2− 1

4
− cmin

24
+L̃

SL(2,R)
0 +L̃N=2

0 +L̃
(ν̃)
0 +L̃

(ν̃)
0 +L̃

U(1)
0 + κ

4

−Tr„
HSL(2,R)

+,(0,0)
⊗H(ν)

Fl,2r

«
⊗
„
HSL(2,R)

+,(0,0)
⊗H(ν̃)

Fl,2r

«

·
∫ ∞

−∞

dp

−2π(ip + J tot
0 + 1

2)
q

p2

k
− 1

4
− cmin

24
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0

· q̄ p2

k
− 1

4
− cmin

24
+L̃

SL(2,R)
0 +L̃N=2

0 +L̃
(ν̃)
0 +L̃

(ν̃)
0 +L̃

U(1)
0

)

.(5.55)

The first trace is simplified by replacing HSL(2,R)
−,(−κ

4
,−κ

2
)’s with HSL(2,R)

−,(0,−κ
2
)’s, and at the same

time removing κ
4 from the exponents of q and q̄.

As was done in [13 – 15], we will now change the integration contour of the first trace

from p′ ≡ p + ik
2 ∈ R + ik

2 to R. Then it picks up a residue of the pole at p = i(J tot
0 + 1

2)

for the states satisfying −k+1
2 < J tot

0 < −1
2 (figure 4). We will show that in section 5.5

that these imaginary-momentum states reside below the lower bound of the continuous

spectrum, and precisely on the boundary of the unitary region [44, 42]. That is, they are

the discrete series representations.

5.3 The continuous spectrum

As in [13 – 15], we consider the continuous and discrete spectra separately.

The continuous spectrum arises from the first trace of (5.55) with the p-integration

contour deformed, and the second trace for which we do not need any deformation. Since

q−
1
4
− cmin

24
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0

= q

“
L

SL(2,R)
0 − 1

8

”
+(LN=2

0 − cmin
24 )+

“
L

(ν)
0 − 1

24

”
+
“
L

(ν)
0 − 1

24

”
+
“
L

U(1)
0 − 1

24

”

, (5.56)
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Figure 4: The contour deformation of the p integration.

if the denominator ip+ J tot
0 + 1

2 were absent, we would formally obtain

∑

ν

(−1)νTrHSL(2,R)

±,(0,−κ
2 )

⊗H(ν)
Fl,2r

q−
1
4
− cmin

24
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

U(1)
0 =

±i
ϑ1(τ, 0)

·Fl,2r(τ, 0)

η3(τ)
,

(5.57)

which contains a divergent factor ±i
ϑ1(τ,0) . This divergence comes from the zero mode con-

tributions in the SL(2,R) module. In reality, the traces in the holomorphic and anti-

holomorphic sectors are not independent but are constrained by the condition (5.52), but

still the trace is divergent because, for a given pair of holomorphic and anti-holomorphic

states with fixed values of L0, L̃0 and J tot
0 (= J̃ tot

0 ), there are infinitely many states having

the same L0, L̃0 but different J tot
0 (= J̃ tot

0 ), and the sum of the form

−
∞∑

n=0

1

z − n
(5.58)

does not converge. Following [14], we use the formula

−
∞∑

n=0

e−nǫ

z − n
= − log ǫ+

∂

∂z
log Γ(−z) − C +O(ǫ) +O(ǫ log ǫ), (5.59)

to regularize this divergence to obtain a finite answer. We give a proof for (5.59) in

appendix D, thereby correcting (irrelevant) typos (the minus sign in front of log and Euler’s

constant) in [14]. Then the contribution to − 1
2π(ip+Jtot

0 + 1
2
)

from an arbitrary number of

J−
0 multiplications in HSL(2,R)

−,(0,−κ
2
) (in the first trace of (5.55)) is − log ǫ

2π times

TrHSL(2,R)
−,(0,0)

/{J−
0 }q

L
SL(2,R)
0 yJ3

0 =
−iq 1

8 y+ 1
2

ϑ1(τ, z)

/ 1

1 − y−1

z→0→ q
1
8

η3(τ)
(5.60)
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to leading order. Here we denote by HSL(2,R)
−,(h,j0)

/{J−
0 } the coset of the module HSL(2,R)

−,(h,l0)

obtained by modding out the J−
0 multiplication. Similar equations hold for the second

trace. Therefore, (5.55) becomes

(5.55) =
− log ǫ

2π
· 1

4k

∫ ∞

−∞
dp(qq̄)

p2

k
1

|η(τ)|2

(
Fl,2(r+1)(τ, 0)(Fl̃,2(r+1)(τ, 0))

∗

|η3(τ)|2

+
Fl,2r(τ, 0)(Fl̃,2r(τ, 0))

∗

|η3(τ)|2

)

+O(ǫ0). (5.61)

ZM4×CY (Xn)(τ) (4.26) is obtained by summing (5.61) over r ∈ Zkmin+4 + l
2 and l, l̃ with a

weight Nl,l̃, and hence

ZM4×CY (Xn)(τ) = C
− log ǫ

8πk

∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+
l
2

∫ ∞

−∞
dp(qq̄)

p2

k
1

|η(τ)|2 (5.62)

·
(
Fl,2(r+1)(τ, 0)(Fl̃,2(r+1)(τ, 0))

∗

|η3(τ)|2 +
Fl,2r(τ, 0)(Fl̃,2r(τ, 0))

∗

|η3(τ)|2

)

+O(ǫ0)

= C
− log ǫ

8πk

∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+
l
2

√

k

τ2

1

|η(τ)|2 ·
Fl,2r(τ, 0)(Fl̃,2r(τ, 0))

∗

|η3(τ)|2 +O(ǫ0).

This shows that the coefficient of the log ǫ divergence of ZM4×CY (Xn)(τ) is precisely the in-

tegrand of the old partition function (3.26) (without the transverse boson factor) consisting

of only the continuous series representations.

5.4 The discrete spectrum

Let us now consider the discrete spectrum, which is the main focus of this paper. In

section 5.2, we have deformed the p-integration contour of the first trace in (5.55), the

summation of which over l, l̃ (with a weight Nl,l̃) and r is equal to ZM4×CY (Xn)(τ). Then

any state in
(

HSL(2,R)
−,(−κ

4
,−κ

2
) ⊗H(ν)

Fl,2(r+1)

)

⊗
(

HSL(2,R)
−,(−κ

4
,−κ

2
) ⊗H(ν̃)

Fl,2(r+1)

)

such that the eigen-

value of J tot
0 is between −k+1

2 and −1
2 gives rise to a pole in the integrand. The resulting

small contour around the pole is clock-wise, and the residue integral just cancels the −2πi

factor of the denominator. The residue contributions to ZM4×CY (Xn)(τ) are therefore

Residues =C
∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+
l
2

|η2(τ)|2
4k

(5.63)

·
∑

ν,ν̃∈Z4(kmin+2)

(−1)ν+ν̃Tr„
HSL(2,R)

−,(0,−κ
2 )

⊗H(ν)
Fl,2r

«
⊗
„
HSL(2,R)

−,(0,− κ
2 )

⊗H(ν̃)
Fl,2r

«̨̨
˛̨
− k+1

2 ≤Jtot
0 ≤ 1

2 , Jtot
0 =J̃tot

0

· (qq̄) 1
k (i(Jtot

0 + 1
2)+

ik
2 )

2

· q
“
L

SL(2,R)
0 − 1

8

”
+(LN=2

0 − cmin
24 )+

“
L

(ν)
0 − 1

24

”
+
“
L

(ν)
0 − 1

24

”
+
“
L

U(1)
0 − 1

24

”

· q̄
“
L̃

SL(2,R)
0 − 1

8

”
+(L̃N=2

0 − cmin
24 )+

“
L̃

(ν)
0 − 1

24

”
+
“
L̃

(ν)
0 − 1

24

”
+
“
L̃

U(1)
0 − 1

24

”

,
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where we have shifted r + 1 to r in the r-summation, and also L
SL(2,R)
0 (and L̃

SL(2,R)
0 ) by

κ
4 as we mentioned below eq. (5.55).

As we noted at the beginning of section 4, (5.63) would become a polynomial with

integer coefficients if we had started from the partition function (4.1) with C = 4k.

To obtain the discrete spectrum, we first relax the conditions for J tot
0 and J̃ tot

0 and

consider
∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+ l
2

|η2(τ)|2

·
∑

ν,ν̃∈Z4(kmin+2)

(−1)ν+ν̃Tr„
HSL(2,R)

−,(0,−κ
2 )

⊗H(ν)
Fl,2r

«
⊗
„
HSL(2,R)

−,(0,−κ
2 )

⊗H(ν̃)
Fl,2r

«

· q
“
L

SL(2,R)
0 − 1

8

”
+(LN=2

0 − cmin
24 )+

“
L

(ν)
0 − 1

24

”
+
“
L

(ν)
0 − 1

24

”
+
“
L

U(1)
0 − 1

24

”

yJtot
0

· q̄
“
L̃

SL(2,R)
0 − 1

8

”
+(L̃N=2

0 − cmin
24 )+

“
L̃

(ν)
0 − 1

24

”
+
“
L̃

(ν)
0 − 1

24

”
+
“
L̃

U(1)
0 − 1

24

”

ȳJ̃tot
0 (5.64)

instead of (5.63). Next we find the states which satisfy the conditions −k+1
2 ≤ J tot

0 ≤ −1
2

and J tot
0 = J̃ tot

0 , and then we take into account the “drop” of L0 due to the imaginary

momentum factor

(qq̄)
1
k (i(Jtot

0 + 1
2)+

ik
2 )

2

(5.65)

in (5.63). Without the factor (5.65), we can easily evaluate (5.64):9 ,10

(5.64) =
∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+
l
2

2F̂l,2r(τ, z)(2F̂l̃,2r(τ, z))
∗

∣
∣
∣y

κ−1
2 ϑ̃1(τ, z)η(τ)

∣
∣
∣

2 . (5.66)

5.5 Massless spectra for odd kmin

We consider the cases kmin odd and kmin even separately. We first assume that kmin is odd.

Massless states in type II string theories come from those with the total conformal weight
1
2 . Therefore, they must lie at the lowest L

SL(2,R)
0 level. Since J3

0 takes values

J3
0 = −κ

2
, − κ

2
− 1, − κ

2
− 2, . . . (κ = k + 2) (5.67)

at the lowest L
SL(2,R)
0 level in HSL(2,R)

−,(0,−κ
2
), the condition

−k + 1

2
< J tot

0 < −1

2
(5.68)

for the existence of a pole implies that a noncompact N = 2 representation can contribute

to the discrete series spectrum only if it carries a J
U(1)
0 charge in the ranges

kmin + 4

2
+ (kmin + 4)ncluster < J

U(1)
0 <

(
kmin + 4

2
+ (kmin + 4)ncluster

)

+ kmin + 2,

9F̂l,2r(τ, z) is so defined that F̂l,2r(τ, z) coincides with Fl,2r(τ, 0), where the latter was defined in [13]. It

is more natural to consider 2F̂l,2r here because it is a polynomial of q with integer coefficients.
10We should mention that in [68] a question has been raised as to whether the split of the partition

function in this way is consistent with the degeneracy of descendent states of the N = 2 superconformal

algebra module. We leave this question open.
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Figure 5: The clusters and the discrete states (kmin = 1, NS sector). The circle at (J
U(1)
0 , h) =

(0, 0) in the ncluster = −1 cluster and the square at (3, 1
2 ) in the ncluster = 0 cluster correspond to

two massless supermultiplets for type II compactifications.

ncluster ≡ −κ
2
− J3

0 − F (ν) ∈
{

Z (NS sector),

Z + 1
2 (R sector),

(5.69)

where we have introduced a label ncluster to distinguish different “clusters” of relevant

noncompact N = 2 representations (figure 5).

Let us consider a continuous family of noncompact N = 2 representations with a defi-

nite J
U(1)
0 charge in the range (5.69), which is drawn as a semi-infinite line in figure 5. As

we discussed, such a family in the partition function is accompanied by a residue contri-

bution, which has a conformal weight yet lower than the lower bound of the continuous

spectrum by an amount equal to the exponent of (5.65). For the holomorphic part, it is

found to be

−

(

J
U(1)
0 − (kmin + 4)(ncluster + 1

2 )
)2

2(kmin + 2)(kmin + 4)
. (5.70)

The lower bound of the continuous spectrum (which can be read off from the level-2(kmin +

2)(kmin + 4) theta function) is

1

4
− cmin

24
+ 2(kmin + 2)(kmin + 4)

(

J
U(1)
0

2(kmin + 2)(kmin + 4)

)2

. (5.71)
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Adding (5.70) to (5.71), we find the conformal weight of the residue contribution

(5.71) + (5.70) =

(
ncluster + 1

2

)
J

U(1)
0

kmin + 2
− ĉKS − 1

2

((

ncluster +
1

2

)2

− 1

4

)

, (5.72)

where

ĉKS =
κ

κ− 2
(5.73)

is 1
3 of the central charge of the noncompact N = 2 CFT. (5.72) is precisely the series of

equations of the boundary lines surrounding the polygonal region of the N = 2 unitary

representations [44] (figure 5). Thus we have shown that they are indeed the N = 2

representations coming from the discrete series of SL(2,R).

It turns out that the states with the total conformal weight 1
2 exist only in the ncluster =

0 and ncluster = −1 clusters. If ncluster = 0, (5.67) implies that the “Liouville fermion

number” (that is, the number of the fermion oscillators of the noncompact N = 2 CFT)

in the NS sector F (ν) (= F (NS)) takes values 0, 1, . . . . (The R sector can be analyzed

in the same way as done below; anyway the supersymmetry ensures that the massless

spectra must be identical.) For massless states F (NS) must be 0 or 1 because otherwise

the conformal weight h exceeds 1
2 . The noncompact N = 2 CFT representations in the

ncluster = 0 cluster have J
U(1)
0 charges in the range

kmin

2
+ 2 < J

U(1)
0 <

3kmin

2
+ 4. (5.74)

The upper limit for massless states is much stronger than this:

kmin

2
+ 2 < J

U(1)
0 ≤ kmin + 2 (5.75)

because otherwise the straight-line boundary, on which the discrete series resides, already

goes above h = 1
2 . Therefore, there are kmin+1

2 different possible J
U(1)
0 charges

J
U(1)
0 = kmin + 2 − j

(

j = 0, . . . ,
kmin − 1

2

)

. (5.76)

Since it does not contain J
U(1)
0 = 0, F (NS) needs to be 0 and we look for h = 1

2 combinations

of states of the noncompact coset and N = 2 minimal CFT sectors. It turns out that for

every j above, there exists precisely one F̂j,2r which contains an h = 1
2 combination; this

is F̂j,j+2. Indeed, it contains NS-sector terms such as (See appendix.)

F̂
(+)NS
j,j+2 (τ, z) · q 1

4 = q
1
4χj,0

j (τ, 0)(Θ0,2(τ, 0)Θ0,2(τ, z) + Θ2,2(τ, 0)Θ2,2(τ, z))

· Θ−2j+2(kmin+2),2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · ·

= q
1
4
− cmin

24
+ j

2(kmin+2)
+

(−j+kmin+2)2

2(kmin+2)(kmin+4) y
−j+kmin+2

kmin+4 + · · · , (5.77)
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where we have taken into account the extra factor of q
1
4 because of the shortage of the

eta (or theta) functions11 in the denominator of the partition function. If we include the

imaginary-momentum contribution (5.70) with ncluster = 0, we have the conformal weight

1

4
− cmin

24
+

j

2(kmin+2)
+

(−j+kmin+2)2

2(kmin+2)(kmin+4)
−

(

−j+kmin+2− kmin+4
2

)2

2(kmin+2)(kmin+4)
=

1

2
. (5.78)

Since F̂j,j+2 = F̂kmin−j,kmin−j+2 (B.42), F̂
(+)NS
l,l+2 give rise to an h = 1

2 state for every l =

0, 1, . . . , kmin. The character of the N = 2 minimal model is χj,0
j . The anti-holomorphic

sector is similar. So for the Akmin+1 modular invariant there are kmin+1
2 complex scalars in

the NS-NS sector.

Taking also the Ramond sector into account, each NS-NS complex scalar becomes

a part of a single hyper-multiplet for type IIA (since the two massless Ramond-Ramond

states are spacetime scalars), and a single vector multiplet for typeIIB strings (since the

Ramond-Ramond states become the two helicity states of a massless vector).

Next we turn to the ncluster = −1 cluster. In this case (5.67) and (5.69) require that

the NS-sector Liouville fermion number F (NS) takes values ≥ 1. This means that the

Liouville fermion already “spends” the maximal conformal weight for massless states (that

is, h = 1
2) so that the remaining CFT sectors can only associate an h = 0 state with it. In

this ncluster = −1 cluster, J
U(1)
0 takes integral values in the range

−kmin

2
− 2 < J

U(1)
0 <

kmin

2
, (5.79)

and indeed contains J
U(1)
0 = 0. The family of noncompact N = 2 representations with

J
U(1)
0 = 0 are contained in several F̂l,2r’s, among which

F̂
(−)NS
0,0 (τ, z) · q 1

4 = q
1
4χ0,0

0 (τ, 0)(Θ0,2(τ, 0)Θ2,2(τ, z) + Θ2,2(τ, 0)Θ0,2(τ, z))

· Θ0,2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · · (5.80)

only gives rise to an h = 0 combination of states of the noncompact and minimal N = 2

CFTs, if the effect (5.70) of the imaginary-momentum factor is taken into account. Since

J
U(1)
0 = 0 for the ncluster = −1 cluster of F̂NS

0,0 (τ, z), (5.70) becomes

(5.70) = − kmin + 4

8(kmin + 2)
, (5.81)

11To read off the conformal weights of the internal CFT representations from (5.66), we write the denom-

inator as an integer power series of q with an overall ghost ground state factor (in the spherical worldsheet

coordinates) of q
1
2 . In the usual critical strings, this factor may be thought of as provided by the 12 eta

functions coming from the 8 transverse bosons and the 4 complex fermions, that is, the normal ordering

constant factor in the cylindrical worldsheet coordinates. In the present case, we have only one ϑ1 and

three η’s (one from (5.66) and two from the transverse bosons (4.9)), so we need to multiply both the

denominator and the numerator by q
1
4 . This is the Liouville energy, which makes the tachyon be massless

in two-dimensional string theory.
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which cancels the extra conformal weight of the continuous series 1
4 − cmin

24 . The first level-2

theta function with z = 0 comes from the complex fermion of the transverse spacetime

dimensions, while the second level-2 theta function is the one from the Liouville fermion.

Θ2,2(τ, 0)Θ0,2(τ, z) contains a term q
1
2 (y+1+y−1), of which q

1
2 y+1 has F (NS) = 1 and corre-

sponds to a discrete state. On the other hand, although Θ2,2(τ, 0)Θ0,2(τ, z) has 2q
1
2 in the

expansion, they have F (NS) = 0 and hence do not correspond to discrete states. Combined

with a similar state in the anti-holomorphic sector, this h = 1
2 state becomes a real scalar

in the four-dimensional spacetime. Since F̂0,0 = F̂kmin,2(kmin+4), there is another real scalar.

Taking account of the Ramond sector again, they constitute a single hyper/vector

multiplet for typeIIA/IIB strings. In all, for the Akmin+1 modular invariant with odd kmin,

there are kmin+3
2 massless hyper/vector multiplets for typeIIA/IIB strings. kmin+1

2 of them

have NS-sector discrete states in the ncluster = 0 cluster, whereas one has those in the

ncluster = −1 cluster. R-sector discrete states are all in the ncluster = −1
2 cluster.

In usual “compact” Gepner models, where the internal N = 2 CFT consists of only

the N = 2 minimal models, the internal h = 0 state is always accompanied by a graviton,

an anti-symmetric tensor and a dilaton, with their superpartners. In contrast, we have

only a massless scalar in the spectrum and there is no localized massless graviton due to

the constraint F (NS) ≥ 1 for ncluster = −1.12

We should also note that, although the massless state in the ncluster = −1 cluster comes

from the free boson module H0,K , it does not contain the identity representation module of

the noncompact N = 2 CFT because that massless state is made of a combination of |0〉 in

the free boson module and an F (NS) = 1 state in the free fermion module. This combination

of states has h = 1
2 and hence is not contained in the N = 2 identity representation module.

This can be seen by the fact that the generic (reducible) N = 2 character with h = 0, Q = 0

is decomposed into irreducible characters of the identity representation and two discrete

series representations with h = 1
2 , Q = ±1. This is consistent with the fact that the identity

representation of SL(2,R) does not correspond to a normalizable mode.

5.6 Massless spectra for even kmin: a gapless13 spectrum

Massless spectra for even kmin are similar to those for the odd case, but there is a cru-

cial difference. After the contour deformation discussed in section 5.4, some families of

continuous series “leave behind” discrete series as pole contributions if

kmin+4

2
+(kmin+4)ncluster≤ J

U(1)
0 ≤

(
kmin+4

2
+(kmin+4)ncluster

)

+kmin+2, (5.82)

where ncluster is given by (5.69). Like in the case of odd kmin, only the ncluster = −1 and 0

clusters are relevant for the massless spectrum. In the ncluster = 0 cluster in the NS sector,

massless states only come from noncompact N = 2 representations with h ≤ 1
2 , so the

12The author thanks T.Eguchi and Y.Sugawara for discussions on this point.
13Here by “gap” we mean (1) literally an opening between the end of a continuous spectrum and a discrete

state lying on a segment, and (2) a mass of a state. In both senses there is no gap for the states indicated

by arrows in figure 6.
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upper limit of (5.69) is lowered to

kmin + 4

2
≤ J

U(1)
0 ≤ kmin + 2. (5.83)

Since kmin is even, the contours before and after the deformation can “hit” the pole if J
U(1)
0

is at either of the two ends of the domain (5.82). For the restricted range (5.83), the pole can

still be located on the contour after the deformation if J
U(1)
0 is at the lower limit (= kmin+4

2 ).

This means that the continuous spectrum already reaches the boundary of the unitary

region (figure 6). Depending on how the contour is deformed to circumvent this pole, the

residue may or may not contribute to the partition function, and irrespective of how it is

deformed, there exist a continuous spectrum of modes arbitrarily close to the discrete mode.

As we discussed in [8], a generic N = 2 representation becomes reducible at the

boundary of the unitary region, where the generic character is decomposed into a sum

of characters of discrete (including the identity) representations. Also, in that paper we

interpreted this massless state as the geometric modulus of the conifold. In this paper,

we regard the geometric moduli of a singular Calabi-Yau not as a part of the continuous

spectra, but as pole contributions to the partition function. In the conifold (kmin = 0) case,

there is another massless multiplet from the ncluster = −1 sector, which has a nonzero mass

gap below the lowest end of the continuum and hence may be identified as the geometric

modulus. Since the (deformed) conifold has only one modulus (the size of the S3), this

would imply that the gapless state does not correspond to any topological cycle for general

even-kmin models.

Besides the gapless spectrum at J
U(1)
0 = kmin+4

2 , there are kmin
2 possible J

U(1)
0 values

J
U(1)
0 = kmin + 2 − j (j = 0, . . . ,

kmin

2
− 1). (5.84)

which give rise to massless states, similarly to the kmin odd case. Again F̂j,j+2 and

F̂kmin−j,kmin−j+2 (j = 0, . . . , kmin
2 − 1) correspond to such states. The all reside below the

lowest limit of the continuous spectrum with a finite mass gap. The ncluster = −1 sector is

also similar to that for the kmin odd case.

To summarize, for the Akmin+1 modular invariant with even kmin, there are (excluding

the gapless one) kmin
2 +1 massless hyper/vector multiplets for typeIIA/IIB strings. Similarly

to the kmin odd case, kmin
2 of them has NS-sector discrete states in the ncluster = 0 cluster,

and one has those in the ncluster = −1.

We should note that the pattern of the chiral ring structure has already been recognized

in [13]. The recognition of the gapless spectrum for the even kmin case is new, however.

5.7 Separation of the discrete series for heterotic strings

Massless discrete spectra for heterotic strings can be similarly obtained from the heterotic

conversion of (5.66):

−→
∑

l,l̃

Nl,l̃

∑

r∈Zkmin+4+
l
2

2F̂ het
l,2r(τ, z)(2F̂l̃,2r(τ, z))

∗
∣
∣
∣y

κ−1
2 ϑ̃1(τ, z)

∣
∣
∣

2
η13(τ)(η(τ))∗

. (5.85)
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(a) The kmin = 0 case.

(b) The kmin = 2 case.

Figure 6: Spectra for even kmin. The small circles show the locations of the massless discrete

states. Some continuous spectra reach the boundary of the unitary region (the arrows). The N = 2

U(1) charge Q is =
J

U(1)
0

kmin+2 .

where F̂ het
l,2r is F̂E8×E8

l,2r or F̂
SO(32)
l,2r given in appendix. In this case we search for h = 1 states

for the left (holomorphic) sector.

h = 1 states in F̂ het
j,j+2 with odd kmin
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As we did in the type II case, we first assume that kmin is odd. We have seen in the

previous sections that F̂
(+)NS
j,j+2 (τ, z) (j = 0, . . . , kmin

2 − 1) has h = 1
2 discrete states:

F̂
(+)NS
j,j+2 (τ, z) · q

1
4
−

„

−j+kmin+2−
kmin+4

2

«2

2(kmin+2)(kmin+4)

= q
1
4
−

„

−j+kmin+2−
kmin+4

2

«2

2(kmin+2)(kmin+4)

(

χj,0
j (τ, 0)Θ−2j+2(kmin+2),2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+χkmin−j,0
−(kmin−j)(τ, 0)Θ−2j−4,2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · ·
)

· (Θ0,2(τ, 0)Θ0,2(τ, z) + Θ2,2(τ, 0)Θ2,2(τ, z)) , (5.86)

where we have written out the m = j + 2 (as well as the m = j) term in (B.34) because

it becomes relevant for the heterotic massless spectrum. Also, we have already included

the factor from the imaginary momentum. If it is converted to the heterotic versions, the

level-2 theta functions with argument (τ, 0) change as

Θ0,2 =
ϑ3 + ϑ4

2
→ (ϑ3)

5 − (ϑ4)
5

2η4
B(E8), (5.87)

Θ2,2 =
ϑ3 − ϑ4

2
→ (ϑ3)

5 + (ϑ4)
5

2η4
B(E8), (5.88)

and also for the SO(32) theory as

Θ0,2 =
ϑ3 + ϑ4

2
→ (ϑ3)

13 − (ϑ4)
13

2η12
, (5.89)

Θ2,2 =
ϑ3 − ϑ4

2
→ (ϑ3)

13 + (ϑ4)
13

2η12
. (5.90)

The h = 1
2 states come from the lowest term of

ϑ3 + ϑ4

2
(τ, 0)

ϑ3 + ϑ4

2
(τ, z) +

ϑ3 − ϑ4

2
(τ, 0)

ϑ3 − ϑ4

2
(τ, z) = 1 + · · · , (5.91)

which is converted to (besides the eta functions)

ϑ5
3 − ϑ5

4

2
(τ, 0)

ϑ3 + ϑ4

2
(τ, z) +

ϑ5
3 + ϑ5

4

2
(τ, 0)

ϑ3 − ϑ4

2
(τ, z) = 10q

1
2 + q

1
2 (y + y−1) + · · ·

(5.92)

for the E8 × E8 case (B(E8) = 1 + · · · ), and

ϑ13
3 − ϑ13

4

2
(τ, 0)

ϑ3 + ϑ4

2
(τ, z) +

ϑ13
3 + ϑ13

4

2
(τ, 0)

ϑ3 − ϑ4

2
(τ, z) = 26q

1
2 + q

1
2 (y + y−1) + · · ·

(5.93)

for the SO(32) case.

As we have shown in (5.78), the first term on the right hand side of (5.86) starts from

q
1
2 y

−j+kmin+2

kmin+4 . This is in the ncluster = 0 cluster. Either a transverse or a Liouville fermion
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may be excited. Therefore, (5.92) shows that there are (10+1) h = 1 states in the E8×E8

theory; the latter singlet comes from q
1
2 y which has F (NS) = +1, while q

1
2 y−1 does not

corresponds to a discrete state because F (NS) = −1 is not allowed in the ncluster = 0 cluster.

Similarly, we can see from (5.93) that there are (26 + 1) h = 1 states in the SO(32) theory.

On the other hand, the second term of (5.86) has also an expansion q
1
2 y

−j−2
kmin+4 + · · · .

This is in the ncluster = −1 cluster, and therefore it did not produce any massless states

in typeII theories. However, with a Liouville fermion excitation, it is allowed in heterotic

theories. This gives another h = 1 state for both the E8 × E8 and SO(32) theories.

Next consider the R-sector terms of F̂
(+)
j,j+2(τ, z):

F̂
(+)R
j,j+2(τ, z) · q

1
4
−

„

−j+kmin+2−
kmin+4

2

«2

2(kmin+2)(kmin+4)

= q
1
4
−

„

−j+kmin+2−
kmin+4

2

«2

2(kmin+2)(kmin+4)

(

χj,1
j+1(τ, 0)Θ−2j+kmin,2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · ·
)

· (Θ1,2(τ, 0)Θ1,2(τ, z) + Θ−1,2(τ, 0)Θ−1,2(τ, z))

= (q
1
4 y

−j+
kmin

2
kmin+4 + · · · ) (Θ1,2(τ, 0)Θ1,2(τ, z) + Θ−1,2(τ, 0)Θ−1,2(τ, z)) . (5.94)

This is in the ncluster = −1
2 cluster, and so the y+ 1

2 terms survive. Through the heterotic

conversion,

ϑ2 + ϑ̃1

2
(τ, 0)

ϑ2 + ϑ̃1

2
(τ, z) +

ϑ2 − ϑ̃1

2
(τ, 0)

ϑ2 − ϑ̃1

2
(τ, z) = q

1
4 (y

1
2 + y−

1
2 ) + · · · (5.95)

(= Θ1,2(τ, 0)Θ1,2(τ, z) + Θ−1,2(τ, 0)Θ−1,2(τ, z))

is replaced with

ϑ5
2 + ϑ̃5

1

2
(τ, 0)

ϑ2 + ϑ̃1

2
(τ, z) +

ϑ5
2 − ϑ̃5

1

2
(τ, 0)

ϑ2 − ϑ̃1

2
(τ, z) = 16q

3
4 (y

1
2 + y−

1
2 ) + · · · (5.96)

in the E8 × E8 case, or

ϑ13
2 +ϑ̃13

1

2
(τ, 0)

ϑ2+ϑ̃1

2
(τ, z)+

ϑ13
2 −ϑ̃13

1

2
(τ, 0)

ϑ2−ϑ̃1

2
(τ, z) = 212q

7
4 (y

1
2 +y−

1
2 )+· · · (5.97)

in the SO(32) case. (5.96) shows that there are sixteen h = 1 states in the Ramond sector

of the E8 × E8 theory, while (5.97) implies no h = 1 states in the Ramond sector of the

SO(32) theory.

Summarizing the h = 1 states in F̂ het
j,j+2 (j = 0, . . . , kmin

2 − 1), F̂E8×E8
j,j+2 has

10 ⊕ 1⊕ 1 (NS sector), 16 (R sector)

of SO(10), while F̂
SO(32)
j,j+2 has

26 ⊕ 1⊕ 1 (NS sector), no states (R sector)

of SO(26). Taking into account the right moving part and also the symmetry F̂ het
j,j+2 =

F̂ het
kmin−j,kmin−j+2, they become D = 4, N = 1 chiral supermultiplets.
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h = 1 states in F̂ het
0,0 with odd kmin

Just like the type II case, there are also h = 1 states that contribute to F̂ het
0,0 . Before

the conversion, the NS-sector terms are

F̂
(−)NS
0,0 (τ, z) · q

1
4
− kmin+4

8(kmin+2)

= q
1
4
− kmin+4

8(kmin+2)

(

χ0,0
0 (τ, 0)Θ0,2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+χ0,−2
−2 (τ, 0)Θ+2(kmin+4),2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · ·
)

· (Θ0,2(τ, 0)Θ2,2(τ, z) + Θ2,2(τ, 0)Θ0,2(τ, z)) . (5.98)

F̂
(+)NS
0,0 (τ, z) gives rise to no h = 1 states and hence is not written here. We again included

the Liouville energy and the imaginary momentum factor. As we saw in the type II analysis,

this cancels the q−
cmin
24 of the N = 2 characters, giving

= (q0y0 + · · · + q1y1 + · · · )
(
ϑ3 + ϑ4

2
(τ, 0)

ϑ3 − ϑ4

2
(τ, z) +

ϑ3 − ϑ4

2
(τ, 0)

ϑ3 + ϑ4

2
(τ, z)

)

.

(5.99)

In the E8 × E8 case, this is converted to

→ (q0y0 + · · · + q1y1 + · · · )
(
ϑ5

3 − ϑ5
4

2
(τ, 0)

ϑ3 − ϑ4

2
(τ, z) +

ϑ5
3 + ϑ5

4

2
(τ, 0)

ϑ3 + ϑ4

2
(τ, z)

)

.

= (q0y0 + · · · + q1y1 + · · · )
(
10q1(y+1 + y−1) + · · · + 1 + · · ·

)
. (5.100)

The q0y0 term corresponds to a state in the ncluster = −1 cluster. Therefore, only terms

with F (NS) ≥ 1 (that is, those containing y+1 as a factor in the second parenthesis) are

relevant for the discrete spectrum, as long as L
SL(2,R)
0 = 0. This gives 10. While states at

L
SL(2,R)
0 = 0 in the module HSL(2,R)

±,(0,−κ
2
) have J3

0 charges

J3
0 = −κ

2
, − κ

2
− 1, − κ

2
− 2, . . . , (5.101)

those at L
SL(2,R)
0 = 1 have

J3
0 = −κ

2
+ 1, − κ

2
, − κ

2
− 1, . . . . (5.102)

Therefore, for states at L
SL(2,R)
0 = 1, the condition F (NS) ≥ −ncluster is relaxed to F (NS) ≥

−ncluster − 1 = 0. In this case, q0y0 can also be paired with “1”, with a total conformal

weight h = 1 due to L
SL(2,R)
0 = 1. This is a singlet.

The q1y1 term is in the ncluster = 0 cluster. This can be paired with “1” and gives rise

to another singlet of SO(10).

In the SO(32) case, (5.99) becomes

→ (q0y0+· · ·+q1y1+· · · )
(
ϑ13

3 −ϑ13
4

2
(τ, 0)

ϑ3−ϑ4

2
(τ, z)+

ϑ13
3 +ϑ13

4

2
(τ, 0)

ϑ3+ϑ4

2
(τ, z)

)

.
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= (q0y0 + · · · + q1y1 + · · · )
(
26q1(y+1 + y−1) + · · · + 1 + · · ·

)
. (5.103)

A similar analysis shows that there are one 26 and two 1 of SO(26).

Finally, we consider the R-sector terms of F̂ het
0,0 :

F̂
(−)R
0,0 (τ, z) · q

1
4
− kmin+4

8(kmin+2)

= q
1
4
− kmin+4

8(kmin+2)

(

χ0,−1
−1 (τ, 0)Θkmin+4,2(kmin+2)(kmin+4)

(

τ,
z

kmin + 4

)

+ · · ·
)

· (Θ1,2(τ, 0)Θ−1,2(τ, z) + Θ−1,2(τ, 0)Θ1,2(τ, z)) .

= (q
1
4 y

1
2 + · · · )

(

q
1
4 (y+ 1

2 + y−
1
2 ) + · · ·

)

. (5.104)

In the E8 × E8 case, this is converted to

→ (q
1
4 y

1
2 + · · · )

(

16q
3
4 (y+ 1

2 + y−
1
2 ) + · · ·

)

. (5.105)

Again, q
1
4 y

1
2 is in the ncluster = −1

2 cluster and hence chooses only the first 16. In the

SO(32) case,

→ (q
1
4 y

1
2 + · · · )

(

212q
7
4 (y+ 1

2 + y−
1
2 ) + · · ·

)

, (5.106)

and therefore no h = 1 states.

In all, F̂ het
0,0 has exactly the same set of h = 1 states as an F̂ het

j,j+2 does.

Massless spectrum for even kmin

For the Akmin+1 modular invariant model with kmin odd, we have seen that there are
kmin+3

2 sets of massless N = 1 chiral multiplets, in the 10 ⊕ 1 ⊕ 1 ⊕ 16 representation

of SO(10) for the E8 × E8 theory, and in the 26 ⊕ 1 ⊕ 1 representation of SO(26) for

the SO(32) theory. For the Akmin+1 modular invariant model with kmin even, we have

similarly kmin
2 + 1 sets of massless N = 1 chiral multiplets in the same representations.

In addition, there also exist non-localized “massless” matter fields corresponding to the

continuous series representations that reach the boundary of the unitary region, as is the

case in the type II spectrum.

6. Examples

6.1 Type II massless spectrum for kmin = 1

The central charge of the N = 2 minimal model is cmin = 1. The central charge of the

SL(2,R)/U(1) coset CFT is then 9 − 1 = 8, and hence

κ =
16

5
, k =

6

5
. (6.1)

The string functions for kmin = 1 are simply

clm(τ) =
δ
(mod2)
m,l

η(τ)
, (6.2)
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where l = 0, 1. The kmin = 1 minimal characters are

χl,s
m (τ, z) =

δ
(mod2)
m,l+s

η(τ)
Θ2m−3s,6

(

τ,
z

3

)

. (6.3)

To find the massless spectrum, it is convenient to use the formulas for F̂l,2r (1) given

in appendix. Since

F̂1,2r = F̂0,5−2r, (6.4)

we only consider l = 0. Then r takes values in Z5. Setting kmin = 1, we obtain

F̂
(−)
0,2r(τ, z) =

1

η(τ)
Θ−4r,5

(

τ,
z

5

) 1

2
Λ̂2(τ, z), (6.5)

F̂
(+)
0,2r(τ, z) =

1

η(τ)
Θ−4r+5,5

(

τ,
z

5

) 1

2
Λ̂1(τ, z). (6.6)

The NS- and R-sector spectra can be considered separately by writing

Λ̂1(τ, z) = Λ̂NS
1 (τ, z) − Λ̂R

1 (τ, z), (6.7)

1

2
Λ̂NS

1 (τ, z) ≡ Θ1,1(τ, z)Θ(0,0)(τ ; 0, z), (6.8)

1

2
Λ̂R

1 (τ, z) ≡ Θ0,1(τ, z)Θ(1,1)(τ ; 0, z) (6.9)

and

Λ̂2(τ, z) = Λ̂NS
2 (τ, z) − Λ̂R

2 (τ, z), (6.10)

1

2
Λ̂NS

2 (τ, z) ≡ Θ0,1(τ, z)Θ(0,2)(τ ; 0, z), (6.11)

1

2
Λ̂R

2 (τ, z) ≡ Θ1,1(τ, z)Θ(1,−1)(τ ; 0, z), (6.12)

where

Θ(s,s′)(τ ; z, z
′) ≡

∑

ν∈Z2

Θs+2ν,2(τ, z)Θs′+2ν,2(τ, z
′). (6.13)

We define F̂
(±)NS
l,2r as formulas similar to (B.33), (B.35) but with Λ̂2(τ, z), Λ̂1(τ, z) being

replaced with Λ̂NS
2 (τ, z), Λ̂NS

1 (τ, z), respectively, and

F̂NS
l,2r ≡ 1

2

(

F̂
(−)NS
l,2r + F̂

(+)NS
l,2r

)

. (6.14)

Among them, only F̂NS
0,0 , F̂NS

0,−4 and F̂NS
0,+2(= F̂NS

0,−8) have theta functions whose U(1) charges

are in the ranges (5.69).

F̂NS
0,0 (τ, z) has an expansion

2F̂NS
0,0 (τ, z) = (F̂

(−)NS
0,0 + F̂

(+)NS
0,0 )(τ, z)
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=
1

η(τ)
(1 + q(y + y−1) + · · ·
︸ ︷︷ ︸

Θ0,5(τ, z
5)Θ0,1(τ,z)

)(q
1
2 (y + y−1 + 2) + · · ·
︸ ︷︷ ︸

Θ(0,2)(τ ;0,z)

)

+
1

η(τ)
(q(y2 + y−2 + 2) + · · ·
︸ ︷︷ ︸

Θ5,5(τ, z
5)Θ1,1(τ,z)

)(1 + 2q(y + y−1) + · · ·
︸ ︷︷ ︸

Θ(0,0)(τ ;0,z)

). (6.15)

The cluster number ncluster can be read off from the power of y in the expansion of

Θ∗,5(τ,
z
5 )Θ∗,1(τ, z); if the power satisfies

1

2
+ n < (The power) <

k + 1

2
+ n (6.16)

for some n ∈ Z (∈ Z + 1
2 ) for the NS (R) sector, then ncluster = n.

The first line of (6.15) contains “1” in the first parenthesis; this is in the ncluster =

−1 cluster, for which F (NS) ≥ 1.14 Therefore, it can be paired with q
1
2 y in the second

parenthesis, but not with q
1
2 y−1. The second line has no q

1
2 terms. Thus we found a single

h = 1
2 state in F̂NS

0,0 (τ, z).

Also F̂NS
0,2 (τ, z) is expanded as

2F̂NS
0,2 (τ, z) × q

1
5 = q

1
5 (F̂

(−)NS
0,2 + F̂

(+)NS
0,2 )(τ, z)

=
q

1
5

η(τ)
( q

4
5 y−

2
5 + · · ·

︸ ︷︷ ︸

Θ−4,5(τ, z
5)Θ0,1(τ,z)

)(q
1
2 (y + y−1 + 2) + · · ·
︸ ︷︷ ︸

Θ(0,2)(τ ;0,z)

)

+
q

1
5

η(τ)
(q

1
20

+ 1
4 y

1
10 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Θ+1,5(τ, z
5)Θ1,1(τ,z)

)(1 + 2q(y + y−1) + · · ·
︸ ︷︷ ︸

Θ(0,0)(τ ;0,z)

), (6.17)

where we have included the factor15 of q
1
5 coming from the extra weight

1

4
− cmin

24
=

5

24
(6.18)

because of the shortage of the eta functions in the denominator of the partition function,

minus the “drop” coming from the imaginary momentum of a possible discrete state

1

k

(

J tot
0 +

1

2
+
k

2

)2

=
kmin + 4

2(kmin + 2)

(

J
U(1)
0

kmin + 4
− 1

2
− ncluster

)2

=
1

120
(6.19)

( 5
24 − 1

120 = 1
5 ). In this case the term q

1
5
+ 1

20
+ 1

4 y
1
10

+ 1
2 = q

1
2 y

3
5 in the last line indicates

a massless discrete state in the ncluster = 0 cluster, while the other q
1
2 y

1
10

− 1
2 is in the

ncluster = −1 cluster, for which F (NS) must be ≥ 1, and does not corresponds to any

discrete states.

14To be sure, F (NS) here is the fermion number in the NS sector defined in section?, which should not be

confused with F̂NS
l,2r(τ, z).

15For F̂NS
0,0 such a factor is absent because in that case the imaginary momentum factor precisely cancels

the extra conformal weight of the continuous series.
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We can similarly expand q
4
30 F̂NS

0,−4(τ, z) (where 4
30 is again 5

24 minus the imaginary

momentum contribution 3
40), but can find no h = 1

2 states.

Therefore, for the A2 modular invariant (in which kmin = 1), we find two massless

states in the NS-NS sector, one from F̂NS
0,0 (F̂NS

0,0 )∗ and the other from F̂NS
0,2 (F̂NS

0,2 )∗. Due

to (6.4), F̂NS
1,5 (F̂NS

1,5 )∗ and F̂NS
1,7 (F̂NS

1,7 )∗ are also in the summation (5.66).

We study the Ramond sector in a similar way, and find as many h = 1
2 states as in

the NS sector due to the supersymmetry. All in all, they are two vector multiplets for the

typeIIA case and two hypermultiplets for the typeIIB case, as we discussed in section 5.5.

6.2 E8 × E8 heterotic massless spectrum for kmin = 1

Next we turn to the E8 ×E8 heterotic string compactification. Again, we set kmin = 1. As

we did for Λ̂1 and Λ̂2 in the last subsection, we write

Λ̂E8×E8
1 (τ, z) = Λ̂E8×E8,NS

1 (τ, z) + Λ̂E8×E8,R
1 (τ, z), (6.20)

1
2 Λ̂E8×E8,NS

1 (τ, z)

η14(τ)
≡Θ1,1(τ, z)

(

B(10)
v (τ, 0)B

(2)
0 (τ, z)+B

(10)
0 (τ, 0)B(2)

v (τ, z)
)

B(E8)(τ, 0),

(6.21)
1
2 Λ̂E8×E8,R

1 (τ, z)

η14(τ)
≡ Θ0,1(τ, z)

(

B(10)
s (τ, 0)B(2)

s (τ, z) +B
(10)
s̄ (τ, 0)B

(2)
s̄ (τ, z)

)

B(E8)(τ, 0),

(6.22)

and

Λ̂E8×E8
2 (τ, z) = Λ̂E8×E8,NS

2 (τ, z) + Λ̂E8×E8,R
2 (τ, z), (6.23)

1
2 Λ̂E8×E8,NS

2 (τ, z)

η14(τ)
≡ Θ0,1(τ, z)

(

B
(10)
0 (τ, 0)B

(2)
0 (τ, z) +B(10)

v (τ, 0)B(2)
v (τ, z)

)

B(E8)(τ, 0),

(6.24)
1
2 Λ̂E8×E8,R

2 (τ, z)

η14(τ)
≡ Θ1,1(τ, z)

(

B(10)
s (τ, 0)B(2)

s (τ, z) +B
(10)
s̄ (τ, 0)B

(2)
s̄ (τ, z)

)

B(E8)(τ, 0).

(6.25)

Then

F̂E8×E8
l,2r (τ, z) =

(

F̂E8×E8,NS
l,2r + F̂E8×E8,R

l,2r

)

(τ, z). (6.26)

Let us first consider 2F̂E8×E8
0,0 :

2F̂E8×E8,NS
0,0 (τ, z) =

(

F̂
E8×E8,(−)NS
0,0 + F̂

E8×E8,(+)NS
0,0

)

(τ, z),

=
1

η(τ)

(

Θ0,5

(

τ,
z

5

) 1

2
Λ̂E8×E8,NS

2 (τ, z) + Θ5,5

(

τ,
z

5

) 1

2
Λ̂E8×E8,NS

1 (τ, z)

)

=
1

η(τ)
(1 + q(y + y−1) + · · ·
︸ ︷︷ ︸

Θ0,5(τ, z
5)Θ0,1(τ,z)

)( 1 + q(10y + 10y−1 + 40) + · · ·
︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,NS
2 (τ,z)

)
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+
1

η(τ)
(q(y2 + y−2 + 2) + · · ·
︸ ︷︷ ︸

Θ5,5(τ, z
5)Θ1,1(τ,z)

)( q
1
2 (y + y−1 + 10) + · · ·
︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,NS
1 (τ,z)

), (6.27)

2F̂E8×E8,R
0,0 (τ, z) =

(

F̂
E8×E8,(−)R
0,0 + F̂

E8×E8,(+)R
0,0

)

(τ, z),

=
1

η(τ)

(

Θ0,5

(

τ,
z

5

) 1

2
Λ̂E8×E8,R

2 (τ, z) + Θ5,5

(

τ,
z

5

) 1

2
Λ̂E8×E8,R

1 (τ, z)

)

=
1

η(τ)
(q

1
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Θ0,5(τ, z
5)Θ1,1(τ,z)

)( 16q
3
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,R

2 (τ,z)

)

+
1

η(τ)
(q

5
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Θ5,5(τ, z
5)Θ0,1(τ,z)

)( 16q
3
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,R

1 (τ,z)

). (6.28)

In this case we look for h = 1 states. Again, we can know which cluster the spectrum

belongs to by the power of y in the expansion of Θ∗,5(τ,
z
5)Θ∗,1(τ, z) because they arose

from the composition of the U(1) theta function (and the minimal N = 2 theta function

which has no J tot
0 charge).

In the first line of (6.27), the term “1” in the first parenthesis belongs to the ncluster =

−1 cluster. Therefore, with a lowest L
SU(2,R)
0 (= 0) state, F (NS) must be ≥ 1 and it can be

paired with 10qy, but not with 10qy−1. This gives a single 10 representation of SO(10).

As we noted in section 5.7, if J+
−1|0,−κ

2 〉 (rather than |0,−κ
2 〉) is chosen as the state in the

SL(2,R) module HSL(2,R)
−,(0,−κ

2
), then F (NS) is relaxed to ≥ 0 and the two “1”s can be paired.

This gives a singlet.

The “qy” term is in the ncluster = 0 cluster and can be paired with 1 in the second

parenthesis. This is another singlet. On the other hand, the “qy−1” term is in the ncluster =

−2 cluster and F (NS) must be ≥ 2. Therefore, it does not give rise to any h = 1 states.

Also, no h = 1 states arise from the second line of (6.27). A similar analysis can be made

for the Ramond sector (6.28). This confirms sixteen h = 1 states from the first line. In all,

we find a set of 10 + 1 + 1 + 16 = 28, h = 1 states in 2F̂E8×E8
0,0 .

Next we consider 2F̂E8×E8
0,2 :

2F̂E8×E8,NS
0,2 (τ, z)×q 1

5 =
(

F̂
E8×E8,(−)NS
0,2 + F̂

E8×E8,(+)NS
0,2

)

(τ, z) × q
1
5

=
q

1
5

η(τ)

(

Θ−4,5

(

τ,
z

5

)1

2
Λ̂E8×E8,NS

2 (τ, z)+Θ1,5

(

τ,
z

5

)1

2
Λ̂E8×E8,NS

1 (τ, z)

)

=
q

1
5

η(τ)
( q

4
5 y−

2
5 + · · ·

︸ ︷︷ ︸

Θ−4,5(τ, z
5)Θ0,1(τ,z)

)( 1 + q(10y + 10y−1 + 40) + · · ·
︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,NS
2 (τ,z)

)

+
q

1
5

η(τ)
(q

3
10 (y

3
5 + y−

2
5 ) + · · ·

︸ ︷︷ ︸

Θ1,5(τ, z
5)Θ1,1(τ,z)

)( q
1
2 (y + y−1 + 10) + · · ·
︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,NS
1 (τ,z)

), (6.29)

2F̂E8×E8,R
0,2 (τ, z)×q 1

5 =
(

F̂
E8×E8,(−)R
0,2 + F̂

E8×E8,(+)R
0,2

)

(τ, z) × q
1
5
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=
q

1
5

η(τ)

(

Θ0,5

(

τ,
z

5

)1

2
Λ̂E8×E8,R

2 (τ, z)+Θ5,5

(

τ,
z

5

)1

2
Λ̂E8×E8,R

1 (τ, z)

)

=
q

1
5

η(τ)
(q

21
20 (y

1
10 + y−

9
10 ) + · · ·

︸ ︷︷ ︸

Θ−4,5(τ, z
5)Θ1,1(τ,z)

)( 16q
3
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,R

2 (τ,z)

)

+
q

1
5

η(τ)
( q

1
20 y

1
10 + · · ·

︸ ︷︷ ︸

Θ1,5(τ, z
5)Θ0,1(τ,z)

)( 16q
3
4 (y

1
2 + y−

1
2 ) + · · ·

︸ ︷︷ ︸

Fermion theta fns. of 1
2
Λ̂

E8×E8,R

1 (τ,z)

). (6.30)

The first line of the NS-sector expansion (6.29) contains one q1 term (= q
1
5
+ 4

5 y−
2
5 ), but

it comes from the ncluster = −1 cluster for which FNS ≥ 1 (that is, “1” in the second

parenthesis cannot be paired), and hence does not give rise to a discrete state. The second

line has terms proportional to q
1
5
+ 3

10
+ 1

2 = q1:

q
(

y
3
5 + y−

2
5

) (
10 + y + y−1

)
. (6.31)

y
3
5 is in the ncluster = 0 cluster, while y−

2
5 the ncluster = −1 cluster. Therefore, due to the

constraint, only qy
3
5 · 10, qy 3

5 · y and qy−
2
5 · y correspond to discrete states. The first is

in the 10 representation, while the latter two are singlets. The R-sector expansion (6.30)

similarly gives rise to a 16 of SO(10) from the second line of (6.30).

Since the left- and right-moving F̂l,2r’s with the same r are paired in (5.66), and since

we have seen that (F̂0,−4)
∗ has no h = 1

2 states, we do not need to consider F̂E8×E8
0,−4 .

To summarize the kmin = 1 E8 × E8 heterotic massless spectrum, we have found two

sets of N = 1 scalar multiplets in 10 ⊕ 1 ⊕ 1 ⊕ 16 of SO(10).

6.3 The three generation model

Let us consider the kmin = 3, A4 modular invariant model of the E8 × E8 heterotic string

theory. According to the rule we have found in section 5.7, there appear three generations

of massless matter multiplets in 10⊕1⊕1⊕16 of SO(10), or 27⊕1 of E6. They are localized

on a four-dimensional spacetime. It is interesting to note that these three generations are

not on an equal footing; for example, one generation has the 10 representation from the

ncluster = −1 cluster, whereas in the other two generations it comes from the ncluster = 0

cluster. In a more realistic phenomenological application, this fact might be used as the

origin of the differences among the generations observed in Nature.

There are no localized gauge fields. Gauge fields correspond to the continuous series

representations of SL(2,R) and acquire a mass from the Liouville energy. They propagate

into the bulk, as is the case for the graviton. This situation is analogous to the local GUT

in the standard orbifold compactification, where the matter fields in the twisted sector

constitute locally a representation of a possibly larger group than the actual unbroken

gauge symmetry.
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7. Localized modes in six dimensions

In this section we generalize the analysis in the previous sections to six dimensions. The

partition function for the internal Calabi-Yau is the same except the difference of the level

k, and it has been shown [13] that the discrete spectrum of it for the ALE spaces correctly

reflects their topological data.

As we did in four dimensions, we couple the internal part to a free superconformal field

theory describing the six-dimensional flat Minkowski space, perform a GSO projection in

a suitable way before the continuous and discrete representations are separated. This

is good because, as we mentioned in Introduction, the couplings between the discrete

states and the CFT for the Minkowski space are automatically consistent with the modular

invariance. A state corresponding to a discrete series representation is always associated

with some continuous spectrum of states. They arise from the same integral with different

contours. Therefore, the couplings between the discrete states and the Minkowski CFT are

not arbitrary but constrained by modular invariance of the continuous sector.

In the Calabi-Yau twofold case, the relation between the levels of the SL(2,R) WZW

and the N = 2 minimal modes is

3κ

κ− 2
+

3kmin

kmin + 2
= 6, (7.1)

and hence

κ− 2 = kmin + 2

≡ k. (7.2)

Unlike in the threefold case, k is always an integer for a non-negative integer kmin.

We again consider the internal CFT partition function

Z
(ν)
CY(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

|Θν,2(τ, s1τ − s2)|2
|ϑ1(τ, s1τ − s2)|2

·
√
τ2
k

∑

m,m̃

e−kπτ2s2
1q

m2

k e−2πim(s1τ−s2)q̄
m̃2

k e+2πim̃(s1τ̄−s2) (7.3)

for ν ∈ Z4, where m = n−kw
2 , m̃ = −n+kw

2 and n,w ∈ Z. This is the same as (4.1) with a

slight change of notation, and the Poisson resummation (4.2) has already been done. We set

m ≡ kj +
r

2
,

m̃ ≡ kj̃ +
r̃

2
. (7.4)

Since both n and w are integers, j and j̃ run independently over Z, whereas r and r̃ take

values in Z2k with a constraint r + r̃ = 0 mod 2k. Using this change of variables, Z
(ν)
CY(τ)

can be put in the form

Z
(ν)
CY(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

|Θν,2(τ, s1τ − s2)|2
|ϑ1(τ, s1τ − s2)|2

·
√
τ2
k
e−kπτ2s2

1

∑

r,r̃

Θr,k(τ, s1τ − s2)(Θr̃,k(τ, s1τ − s2))
∗. (7.5)
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Since k = kmin+2, these theta functions are the ones appearing in Fl(τ, z) (3.22), which was

introduced in [13] to construct modular invariants for the ADE singularities. Therefore,

generalizing the result in the previous sections, we can easily arrive at the supersymmetric

modular invariant partition function including the discrete series contributions

ZM6×CY (Xn)(τ) = C

∫ 1

0
ds1

∫ 1

0
ds2

√
τ2
k

(qq̄)
ks21
4

∑

l,l̃

Nll̃

F̂l(τ, s1τ − s2)(F̂l̃(τ, s1τ − s2))
∗

|η2(τ)ϑ1(τ, s1τ − s2)|2
,

(7.6)

where we have introduced a new set of functions

F̂l(τ, z) ≡ 1

2
χ

(kmin)
l (τ, 0)

(

ϑ4
3 − ϑ4

4 − ϑ4
2 + ϑ̃4

1

)

(τ, z)

=
∑

ν∈Z4

(−1)ν
∑

m∈Z2(kmin+2)

χl,ν
m (τ, 0)

∑

ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

Θ2ν0+ν,2(τ, 0)Θ2ν1+ν,2(τ, 0)

· Θ2ν2+ν,2(τ, z)Θm,kmin+2 (τ, z) (7.7)

for l = 0, . . . , kmin. The z-dependences are so chosen that they match those of (7.5).

Again, in going from Z
(ν)
CY(τ) to ZM6×CY (Xn)(τ), we have relaxed the constraint on r and

r̃ in order to obtain a supersymmetric partition function. As before, we can show that

ZM6×CY (Xn)(τ) is invariant under both the modular S- and T-transformations.

In order to separate the discrete series spectrum we define

H(ν)
Fl

≡ ⊕
m∈Z2(kmin+2)

⊕
ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

(

H(kmin)l,ν
m ⊗H2ν0+ν,2 ⊗H2ν1+ν,2 ⊗H2ν2+ν,2 ⊗Hm,kmin+2

)

,

(7.8)

where various component modules are defined in section 5.1. Using this, we can express

F̂l(τ, z) as

F̂l(τ, z)= i−1η4(τ)ϑ1(τ, z)
∑

ν∈Z4

(−1)νTrHSL(2,R)
+,(0,0)

⊗H(ν)
Fl

qL
SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

(ν)
0 +L

U(1)
0 − cmin+7

24

· yJ3
0+F (ν)+J

U(1)
0 + 1

2 , (7.9)

and ZM6×CY (Xn)(τ) can be written in this case as

ZM6×CY (Xn)(τ) = C
∑

l,l̃

Nl,l̃

√
τ2
k

∫ 1

0
ds1

∫ 1

0
ds2

·
∑

ν,ν̃∈Z4

(−1)ν+ν̃Tr“
HSL(2,R)

+,(0,0)
⊗H(ν)

Fl

”
⊗
„
HSL(2,R)

+,(0,0)
⊗H(ν̃)

F
l̃

«

· q
ks21
4

+L
SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

(ν)
0 +L

U(1)
0 − cmin+7

24
+s1(J3

0+F (ν)+J
U(1)
0 + 1

2
)

· q̄
ks21
4

+L̃
SL(2,R)
0 +L̃N=2

0 +L̃
(ν)
0 +L̃

(ν)
0 +L̃

(ν)
0 +L̃

U(1)
0 − cmin+7

24
+s1(J̃3

0+F̃ (ν̃)+J̃
U(1)
0 + 1

2
)
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· e−2πis2(J3
0+F (ν)+J

U(1)
0 −J̃3

0−F̃ (ν̃)−J̃
U(1)
0 )

·
∣
∣η2(τ

∣
∣
2
. (7.10)

As before, the s2 integration yields the constraint

J3
0 + F (ν) + J

U(1)
0 = J̃3

0 + F̃ (ν̃) + J̃
U(1)
0 , (7.11)

the left and right hand sides of which we call J tot
0 and J̃ tot

0 , respectively.

After a similar Fourier transformation and a spectral flow operation, we obtain

ZM6×CY (Xn)(τ) = C
∑

l,l̃

Nl,l̃

|η2(τ)|2
−2πk

∑

ν,ν̃∈Z4

(−1)ν+ν̃

·
(

Tr„
HSL(2,R)

−,(0,−κ
2 )

⊗H(ν)
Fl

«
⊗
„
HSL(2,R)

−,(0,−κ
2 )

⊗H(ν̃)
F

l̃

«

∫ ∞

−∞

dp

ip+J tot
0 + 1

2

q
1
k (p+ ik

2 )
2
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

(ν)
0 +L

U(1)
0 − cmin+7

24

· q̄ 1
k(p+ ik

2 )
2
+L̃

SL(2,R)
0 +L̃N=2

0 +L̃
(ν)
0 +L̃

(ν)
0 +L̃

(ν)
0 +L̃

U(1)
0 − cmin+7

24

−Tr“
HSL(2,R)

+,(0,0)
⊗H(ν)

Fl

”
⊗
„
HSL(2,R)

+,(0,0)
⊗H(ν̃)

F
l̃

«

∫ ∞

−∞

dp

ip+ J tot
0 + 1

2

q
p2

k
+L

SL(2,R)
0 +LN=2

0 +L
(ν)
0 +L

(ν)
0 +L

(ν)
0 +L

U(1)
0 − cmin+7

24

· q̄ p2

k
+L̃

SL(2,R)
0 +L̃N=2

0 +L̃
(ν)
0 +L̃

(ν)
0 +L̃

(ν)
0 +L̃

U(1)
0 − cmin+7

24

)∣
∣
∣
∣
∣
Jtot
0 =J̃tot

0

.(7.12)

We now deform the contour of the first trace. There is a difference here. In the

present case we have k = kmin + 2, so that k grows linearly as kmin. Therefore, if we

change the contour of p from R to R + ik
2 , then it sweeps across many (

[
k
2

]
at most) pole

singularities through the deformation. (In contrast, k does not exceed two in the threefold

case considered in the preceding sections, and therefore the contour picks up at most a

single pole contribution.)

As before, the partition function gets pole contributions from the states having

−kmin + 3

2
< J tot

0 (= J̃ tot
0 ) <

1

2
. (7.13)

To see the massless spectrum, what we need to do is to find conformal weight 1
2 NS-sector

states that satisfy (7.13) and J tot
0 = J̃ tot

0 in

∑

l,l̃

Nl,l̃

∣
∣
∣y

1−κ
2

∣
∣
∣

2 F̂l(τ, z)(F̂l̃(τ, z))
∗

∣
∣
∣ϑ̃1(τ, z)η(τ)

∣
∣
∣

2 (7.14)

with taking into account the Liouville energy (the shortage of eta functions) and the drop

of weight due to the imaginary momentum of the discrete states. C has been chosen to be
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k in this six-dimensional case. The R-sector states follow from supersymmetry. (7.14) is

an analogue of (5.66) and can be similarly derived.

Repeating the previous steps, we set

J3
0 ≡ −κ

2
−N (N = 0, 1, 2, . . .). (7.15)

Then

J tot
0 = −κ

2
−N + F (ν) + J

U(1)
0

≡ −κ
2
− ncluster + J

U(1)
0 . (7.16)

where, again, we defined the number

ncluster = N − F (ν) (7.17)

(∈ Z for the NS sector) to label different allowed ranges of J
U(1)
0 . Using this number, we

have

ncluster +
1

2
< J

U(1)
0 < ncluster +

kmin + 3

2
. (7.18)

Unlike the threefold case, these ranges overlap with the neighboring ones. The imaginary

momentum factor is (for the holomorphic part)

q
− 1

kmin+2

“
J

U(1)
0 − 1

2
−ncluster

”2

. (7.19)

Note that due to (7.15) and (7.17) a discrete state must satisfy F (ν) ≥ −ncluster, the fact

already used extensively in the threefold analysis.

Let us find weight 1
2 state contributions to the NS-sector (ν = 0, 2) terms of

F̂l(τ, z) (7.7).

If ν = 0, at least one of the fermion theta must be Θ2,2, and χl,0
m is (anti-)chiral

primary for m = ±l.
If m = +l, we see from (7.19) that, among several choices of ncluster, a lower ncluster

results in a larger drop of conformal weight. On the other hand, if ncluster is negatively large,

F (ν) ≥ −ncluster means that the Liouville fermion number F (ν) is also large. It turns out

that ncluster = −1 gives the lowest value of conformal weight. In this case, the power of q is

1

8
︸︷︷︸

Liouville energy

+
l

2(kmin+2)
− kmin

8(kmin+2)
︸ ︷︷ ︸

χl,ν
m

+
l2

4(kmin+2)
︸ ︷︷ ︸

Θm,kmin+2

+
1

2
︸︷︷︸

Θ2,2

− (l+1)2

4(kmin+2)
︸ ︷︷ ︸

imaginary momentum factor

=
1

2
.

(7.20)

If m = −l, then ncluster < −1 and it does not give any weight 1
2 states.

Next we consider ν = 2. In this case all the fermion thetas can be Θ0,2 simultaneously.

χl,2
m = χkmin−l,0

m+kmin+2 is (anti-)chiral primary for m = ±(l + 2).
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If m = l + 2, then the lowest conformal weight arises from ncluster = 0. The counting

of the various contributions is

1

8
︸︷︷︸

Liouville energy

+
kmin − l

2(kmin + 2)
− kmin

8(kmin + 2)
︸ ︷︷ ︸

χl,ν
m

+
(l + 2)2

4(kmin + 2)
︸ ︷︷ ︸

Θm,kmin+2

− (l + 1)2

4(kmin + 2)
︸ ︷︷ ︸

imaginary momentum factor

=
1

2
.

(7.21)

On the other hand, if m = (l + 2), there are no weight 1
2 states.

Therefore, we have seen that there are two NS-sector states of conformal weight 1
2

for each F̂l(τ, z). Such states in the R sector must also be two. As is seen from their

imaginary momentum factors, these four states have a common J tot
0 charge, and therefore

the J tot
0 = J̃ tot

0 paring can be done as a supermultiplet. In the Akmin+1-type modular

invariant theory, in which the holomorphic and anti-holomorphic combinations are (fully)

diagonal, there are

(2NS ⊕ 2R) ⊗ (2NS ⊕ 2′
R) = 8bosons ⊕ 8fermions (7.22)

for each l = 0, . . . , kmin. If 2R and 2′
R are the doublets of the same SU(2) factor of SO(4)

(type IIB), the multiplet contains an anti-selfdual tensor. If, on the other hand, they are

the different ones (type IIA), the multiplet is a vector multiplet.

This spectrum of massless states are precisely the ones expected from the geometry of

the ALE spaces. This fact has already been anticipated in the analysis of [13]. They are

opposite to the NS5-branes, and this observation is in agreement with the T-duality [7].

8. Summary and discussion

In this paper, we have considered type II and heterotic string compactifications on an

isolated singularity in the noncompact Gepner model approach. We have mainly studied

the threefold case, but also briefly discussed the twofold case. The conifold-type ADE

singular Calabi-Yau threefolds are modeled by conformal field theory, which is a tensor

product of the SL(2,R)/U(1) Kazama-Suzuki model, an N = 2 minimal model and a free

conformal field theory describing the four-dimensional Minkowski space. We have used

the result of [13] to construct new space-time supersymmetric, modular invariant partition

functions for both type II and heterotic string theories, thereby the issue in the earlier

noncompact Gepner models — the absence of the localized modes — has been resolved.

We have investigated in detail the massless spectra of the localized modes. There are

differences between when the level of the minimal model kmin is odd and when it is even.

In particular, we found gapless spectra of continuous series representations in the even

kmin case. The summary of massless spectra for various cases is shown in table 1. Among

them, we have shown that the kmin = 3 compactification of the E8 × E8 heterotic string

has three generations of matter fields in the 27 ⊕ 1 representation of E6. They are not

on an equal footing, and we propose that this model is worthy of further exploration as a

viable alternative string model for the E6 unification.
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Odd kmin Even kmin

Type IIA kmin+3
2 hypermultiplets kmin

2 + 1 hypermultiplets

(+gapless)

Type IIB kmin+3
2 vector multiplets kmin

2 + 1 vector multiplets

(+gapless)

E8 × E8 heterotic kmin+3
2 chiral supermultiplets kmin

2 + 1 chiral supermultiplets

in 10 ⊕ 1 ⊕ 1⊕ 16 of SO(10) in 10⊕ 1 ⊕ 1⊕ 16 of SO(10)

(or 27 ⊕ 1 of E6) (or 27⊕ 1 of E6) (+gapless)

SO(32) heterotic kmin+3
2 chiral supermultiplets kmin

2 + 1 chiral supermultiplets

in 26⊕ 1 ⊕ 1 in 26 ⊕ 1 ⊕ 1

of SO(26) of SO(26) (+gapless)

Table 1: A summary of four-dimensional massless spectra for the Akmin+1 modular invariant model.

In the twofold case, we have confirmed in the type II case that the massless spectra

of localized modes are consistent with the T-duality between the ALE spaces and the

systems of NS5-branes. Although the heterotic cases have been omitted in this paper, the

conversion can straightforwardly be done and will be reported in a future publication.

There are no localized gauge fields (nor localized gravity) in this model. If we interpret

the Virasoro condition as the wave equation, as we usually do in critical string theories

on a flat space-time, then the wave operator gets a mass term from the Liouville energy.

However, we should note that, in a curved space, one cannot tell whether a field is massless

or massive by looking only at the wave operator. A well-known example is the conformal

mass in the AdS space [69]. Also, in a flat space with a linear-dilaton background, the

scalar Laplacian in the Einstein frame gets a linear term in the derivative along the

linear-dilaton direction. Therefore, we must be careful when we interpret the Liouville

energy as the mass of the gauge fields or gravity. The decoupling of gravity and gauge

fields from the localized modes may be regarded as a consequence of the assumption that

the singularity is isolated. It would be interesting to explore the possibility of relaxing

somehow this assumption (by, for instance, considering first a compact Calabi-Yau and

tracing the gauge dynamics in the decoupling limit) so that their couplings may be

discussed in the framework of conformal field theory.
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A. Theta functions and N = 2 minimal characters

In the appendices below, we assume that k is a positive integer.

Theta functions.

Θm,k(τ, z) ≡
∑

n∈Z

qk(n+ m
2k

)2yk(n+ m
2k

), q = e2πiτ , y = e2πiz , (A.1)

where the level k is a positive integer, and m is an integer. It satisfies

Θm+2k,k(τ, z) = Θm,k(τ, z), (A.2)

Θm,k(τ,−z) = Θ−m,k(τ, z). (A.3)

The Jacobi theta functions.

ϑ3(τ, z) ≡ (Θ0,2 + Θ2,2)(τ, z), (A.4)

ϑ4(τ, z) ≡ (Θ0,2 − Θ2,2)(τ, z), (A.5)

ϑ2(τ, z) ≡ (Θ1,2 + Θ−1,2)(τ, z), (A.6)

ϑ̃1(τ, z) ≡ (Θ1,2 − Θ−1,2)(τ, z). (A.7)

Here we have introduced the unconventional notation ϑ̃1 because it appears in the spectral

flow orbit naturally rather than ϑ1(τ, z) = −iϑ̃1(τ, z).

The composition formula of theta functions.

Θm,k(τ, z)Θm′,k′(τ, z′) =
∑

r∈Zk+k′

Θ2rkk′+km′−k′m,kk′(k+k′)(τ, u)Θ2rk′+m+m′,k+k′(τ, v) (A.8)

or =
∑

r∈Zk+k′

Θ2rkk′−km′+k′m,kk′(k+k′)(τ,−u)Θ2rk+m+m′,k+k′(τ, v),(A.9)

u = z′−z
k+k′ , v = kz+k′z′

k+k′ .

The SU(2)k characters.

χ
(k)
l (τ, z) =

Θl+1.k+2 − Θ−l−1,k+2

Θ1,2 − Θ−1,2
(τ, z) (A.10)

=
∑

m∈Z2k

clm(τ)Θm,k(τ, z). (A.11)

l = 0, 1, . . . , k. The latter equation defines the string functions clm(τ).
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Symmetries of the level-k string functions.

clm+2k(τ) = ck−l
m+k(τ) = clm(τ). (A.12)

The N = 2 minimal characters.

χl,s
m (τ, z) =

∑

r∈Zk

clm+4r−s(τ)Θ2m+(k+2)(4r−s),2k(k+2)(τ,
z

k + 2
), (A.13)

l = 0, 1, . . . , k, m ∈ Z2(k+2), s ∈ Z4.

ch
(NS)
l,m (τ, z) = (χl,0

m + χl,2
m )(τ, z), (A.14)

ch
(fNS)
l,m (τ, z) = (χl,0

m − χl,2
m )(τ, z), (A.15)

ch
(R)
l,m(τ, z) = (χl,1

m + χl,−1
m )(τ, z), (A.16)

ch
(eR)
l,m(τ, z) = (χl,1

m − χl,−1
m )(τ, z). (A.17)

Symmetries of the N = 2 minimal characters.

χl,s
m+2(k+2)(τ, z) = χk−l,s+2

m+k+2 (τ, z) = χl,s
m (τ, z). (A.18)

An identity.

χ
(k)
l (τ, 0)Θs,2(τ,−z) =

∑

m∈Z2(k+2)

Θm,k+2

(

τ,
−2z

k + 2

)

χl,s
m (τ, z), (A.19)

which can be proved by using the composition formula:

χ
(k)
l (τ, z + u)Θs,2(τ, u) =

∑

m∈Z2(k+2)

χl,s
m (τ, z)Θm,k+2

(

τ, u+
kz

k + 2

)

. (A.20)

Modular transformations.

Θm,k

(

−1

τ
,
z

τ

)

=

√
τ

2ik
e

πikz2

2τ

∑

m′∈Z2k

e−πi mm′

k Θm′,k(τ, z), (A.21)

Θm,k(τ + 1, z) = e
πim2

2k Θm,k(τ, z). (A.22)

B. Useful expressions of Fl,2r(τ, z) and F̂l,2r(τ, z)

Fl,2r(τ, z)

Let us name

Θ(s,s′)(τ, z) ≡
∑

ν∈Z2

Θs+2ν,2(τ, z)Θs′+2ν,2(τ, z). (B.1)
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Then

Θ(0,0) = Θ(2,2) =
ϑ2

3 + ϑ2
4

2
, (B.2)

Θ(0,2) = Θ(2,0) =
ϑ2

3 − ϑ2
4

2
, (B.3)

Θ(1,1) = Θ(−1,−1) =
ϑ2

2 + ϑ̃2
1

2
, (B.4)

Θ(1,−1) = Θ(−1,1) =
ϑ2

2 − ϑ̃2
1

2
. (B.5)

(
Θ(0,0)Θ(0,2) − Θ(1,1)Θ(1,−1)

)
(τ, z) =

1

4

(

ϑ4
3 − ϑ4

4 − ϑ4
2 + ϑ̃4

1

)

(τ, z)

= 0. (B.6)

Therefore, we can either write

1

4
χ

(k)
l (τ, 0)

(

ϑ4
3 − ϑ4

4 − ϑ4
2 + ϑ̃4

1

)

(τ, z)

=
(

χ
(k)
l (τ, 0)Θ(0,0)(τ, z)

)

Θ(0,2)(τ, z) −
(

χ
(k)
l (τ, 0)Θ(1,1)(τ, z)

)

Θ(1,−1)(τ, z) (B.7)

and use the composition formula for theta functions in the parentheses first, or write

=
(

χ
(k)
l (τ, 0)Θ(0,2)(τ, z)

)

Θ(0,0)(τ, z) −
(

χ
(k)
l (τ, 0)Θ(1,−1)(τ, z)

)

Θ(1,1)(τ, z) (B.8)

and do the same thing in this expression.

Let us compute (B.7) and (B.8) in two different ways. We first compute

χ
(k)
l (τ, 0)Θ(s,s′)(τ, z). Since χ

(k)
l and Θs,2 are composed into an N = 2 minimal character

and a level-(k+ 2) theta function as shown in (A.20), we further combine this level-(k+ 2)

theta and the remaining level-2 theta in Θ(s,s′)(τ, z) to find

Θ−s′,2(τ,−u)Θm,k+2

(

τ, u+
kz

k+2

)

=
∑

r∈Zk+4

Θ−(k+2)s′−2m+4(k+2)r,2(k+2)(k+4)

(

τ,−
2u+ kz

k+2

k + 4

)

·Θ−s′+m+4r,k+4

(

τ,
k(z + u)

k + 4

)

, (B.9)

χ
(k)
l (τ, 0)Θ(s,s′)(τ, z) =

∑

r∈Zk+4+
l+s+s′

2

∑

m∈Z4(k+2)

δ
(mod2)
m,l+s χ

l,m−(2r+s−s′)
m (τ, z)

·Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)

Θ2r,k+4(τ, 0).

(B.10)

Using (B.10), we find

(B.7) =
∑

r∈Zk+4+
l
2

Θ2r,k+4(τ, 0)
∑

m∈Z4(k+2)

(

δ
(mod2)
m,l Θ(0,2)(τ, z) − δ

(mod2)
m,l+1 Θ(1,−1)(τ, z)

)

· χl,m−2r
m (τ, z)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)

– 53 –



J
H
E
P
1
1
(
2
0
0
8
)
0
2
2

≡
∑

r∈Zk+4+
l
2

Θ2r,k+4(τ, 0)F
(−)
l,2r (τ, z), (B.11)

=
∑

r∈Zk+4+
l
2

Θ2r,k+4(τ, 0)
∑

m∈Z4(k+2)

(

δ
(mod2)
m,l Θ(0,0)(τ, z) − δ

(mod2)
m,l+1 Θ(1,1)(τ, z)

)

· χl,m−2r+2
m (τ, z)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)

≡
∑

r∈Zk+4+
l
2

Θ2r,k+4(τ, 0)F
(+)
l,2r (τ, z). (B.12)

On the other hand, if we apply the composition formula to the two theta functions in

Θ(s,s′), we find

Θ(s,s′)(τ, z) =
∑

ν∈Z2

∑

t∈Z4

Θ8t+8ν+2s+2s′,16

(

τ,
z

2

)

Θ4t−s+s′,4(τ, 0), (B.13)

χ
(k)
l (τ, 0)Θ(s,s′)(τ, z) =

∑

m∈Z2k

clm(τ)Θm,k(τ, 0)
∑

ν∈Z2

∑

t∈Z4

Θ8t+8ν+2s+2s′,16

(

τ,
z

2

)

Θ4t−s+s′,4(τ, 0)

=
∑

r′∈Z2(k+4)

Θr′k+4(τ, 0)
∑

m∈Z2k

clr′+4m+s−s′(τ)Θ s+s′

2
,1
(τ, 2z)

· Θ−4r′+(k+4)(−4m−s+s′),4k(k+4)(τ, 0). (B.14)

This way of composition of theta functions leads to different expressions of (B.7) and (B.8):

(B.7) =
∑

Zk+4+
l
2

Θ2r,k+4(τ, 0)
∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)(τ, 0)

·(Θ0,1(τ, 2z)Θ(0,2)(τ, z) − Θ1,1(τ, 2z)Θ(1,−1)(τ, z)), (B.15)

(B.8) =
∑

Zk+4+
l
2

Θ2r,k+4(τ, 0)
∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)(τ, 0)

·(Θ1,1(τ, 2z)Θ(0,0)(τ, z) − Θ0,1(τ, 2z)Θ(1,1)(τ, z)). (B.16)

Thus we find, for r ∈ Zk+4 + l
2 ,

F
(−)
l,2r (τ, z) =

∑

m∈Z4(k+2)

χl,m−2r
m (τ, z)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)

·
(

δ
(mod2)
m,l Θ(0,2)(τ, z) − δ

(mod2)
m,l+1 Θ(1,−1)(τ, z)

)

(B.17)

=
∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)(τ, 0)

· (Θ0,1(τ, 2z)Θ(0,2)(τ, z) − Θ1,1(τ, 2z)Θ(1,−1)(τ, z))

=
1

2

∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)(τ, 0)Λ2(τ, z), (B.18)

F
(+)
l,2r (τ, z) =

∑

m∈Z4(k+2)

χl,m−2r+2
m (τ, z)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)
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·
(

δ
(mod2)
m,l Θ(0,0)(τ, z) − δ

(mod2)
m,l+1 Θ(1,1)(τ, z)

)

(B.19)

=
∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)(τ, 0)

· (Θ1,1(τ, 2z)Θ(0,0)(τ, z) − Θ0,1(τ, 2z)Θ(1,1)(τ, z))

=
1

2

∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)(τ, 0)Λ1(τ, z), (B.20)

where

Λ1(τ, z) ≡ 2
(
Θ1,1(τ, 2z)Θ(0,0)(τ, z) − Θ0,1(τ, 2z)Θ(1,1)(τ, z)

)
, (B.21)

Λ2(τ, z) ≡ 2
(
Θ0,1(τ, 2z)Θ(0,2)(τ, z) − Θ1,1(τ, 2z)Θ(1,−1)(τ, z)

)
(B.22)

are the same as (3.7), (3.8) in the text. (The definition of Θ(s,s′)(τ, z) is given at the

beginning of this appendix.) In particular, even if k = 0, the equation (A.20) still holds

if we define

χl=0,s
m (τ, z) ≡ δ(mod4)

m,s (m, s ∈ Z4), (B.23)

then we have

F
(−)
l,2r (τ, z) =

{
1
2Λ2(τ, z) if r = 0, 2,

0 if r = 1, 3,
(B.24)

F
(+)
l,2r (τ, z) =

{

0 if r = 0, 2,
1
2Λ1(τ, z) if r = 1, 3.

(B.25)

The total Fl,2r(τ, z) function (3.24) is given by

Fl,2r(τ, z) =
1

2

(

F
(−)
l,2r (τ, z) + F

(+)
l,2r (τ, z)

)

=
1

2

∑

ν∈Z4(kmin+2)

∑

ν0, ν1, ν2 ∈ Z2

ν0 + ν1 + ν2

≡ 1(mod2)

(−1)νχl,l−2r+2ν0+ν
l+ν (τ, z)Θ2ν1+ν,2(τ, z)Θ2ν2+ν,2(τ, z)

· Θ(kmin+2)2r−(kmin+4)(l+ν),2(kmin+2)(kmin+4)

(

τ,
z

kmin + 2

)

. (B.26)

Fl,2r(τ, z) satisfies

Fl,2r+2(k+4)(τ, z) = Fl,2r(τ, z) (B.27)

which is obvious due to the periodicity of theta functions. Also it is easy to show that [9]

Fk−l,2r+k+4(τ, z) = Fl,2r(τ, z). (B.28)
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F̂l,2r(τ, z)

F̂l,2r(τ, z) functions (4.23) can be obtained by modifying the z-dependences of various theta

functions as

χl,s
m (τ, z) → χl,s

m (τ, 0), (B.29)

(Θ(s,s′)(τ, z) ≡ )
∑

ν∈Z2

Θs+2ν,2(τ, z)Θs′+2ν,2(τ, z) →
∑

ν∈Z2

Θs+2ν,2(τ, 0)Θs′+2ν,2(τ, z), (B.30)

Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 2

)

→ Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 4

)

(B.31)

in F
(±)
l,2r (τ, z). The following formulas are useful:

F̂
(−)
l,2r (τ, z) ≡

∑

m∈Z4(k+2)

χl,m−2r
m (τ, 0)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 4

)

·
(

δ
(mod2)
m,l Θ(0,2)(τ ; 0, z) − δ

(mod2)
m,l+1 Θ(1,−1)(τ ; 0, z)

)

(B.32)

=
∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)

(

τ,
z

2(k + 4)

)

· (Θ0,1(τ, z)Θ(0,2)(τ ; 0, z) − Θ1,1(τ, z)Θ(1,−1)(τ ; 0, z))

=
1

2

∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)

(

τ,
z

2(k + 4)

)

Λ̂2(τ, z), (B.33)

F̂
(+)
l,2r (τ, z) ≡

∑

m∈Z4(k+2)

χl,m−2r+2
m (τ, 0)Θ(k+2)2r−(k+4)m,2(k+2)(k+4)

(

τ,
z

k + 4

)

·
(

δ
(mod2)
m,l Θ(0,0)(τ ; 0, z) − δ

(mod2)
m,l+1 Θ(1,1)(τ ; 0, z)

)

(B.34)

=
∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)

(

τ,
z

2(k + 4)

)

· (Θ1,1(τ, z)Θ(0,0)(τ ; 0, z) − Θ0,1(τ, z)Θ(1,1)(τ ; 0, z))

=
1

2

∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)

(

τ,
z

2(k + 4)

)

Λ̂1(τ, z),

(B.35)

F̂l,2r(τ, z) =
1

2

(

F̂
(−)
l,2r (τ, z) + F̂

(+)
l,2r (τ, z)

)

, (B.36)

where

Λ̂1(τ, z) = 2
(
Θ1,1(τ, z)Θ(0,0)(τ ; 0, z) − Θ0,1(τ, z)Θ(1,1)(τ ; 0, z)

)
, (B.37)

Λ̂2(τ, z) = 2
(
Θ0,1(τ, z)Θ(0,2)(τ ; 0, z) − Θ1,1(τ, z)Θ(1,−1)(τ ; 0, z)

)
, (B.38)

Θ(s,s′)(τ ; z, z
′) ≡

∑

ν∈Z2

Θs+2ν,2(τ, z)Θs′+2ν,2(τ, z
′). (B.39)

The expressions (B.37) and (B.38) are equivalent to the definitions (4.6) and (4.7) in the

text. (Note, again, that k here is kmin in (4.23).)
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F̂l,2r(τ, z) also satisfies

F̂l,2r+2(k+4)(τ, z) = F̂l,2r(τ, z), (B.40)

F̂k−l,2r+k+4(τ, z) = F̂l,2r(τ, z), (B.41)

F̂l,−2r(τ, z) = F̂l,2r(τ,−z). (B.42)

C. Heterotic conversion

In Gepner models, any modular invariant partition function for type II strings can be

converted to that for heterotic strings by a straightforward procedure [5], which we review

in this appendix.

Let us denote level-1 affine SO(2n) characters by

B
(2n)
0 (τ, z) ≡ (ϑ3(τ, z))

n + (ϑ4(τ, z))
n

2(η(τ))n
, (C.1)

B(2n)
v (τ, z) ≡ (ϑ3(τ, z))

n − (ϑ4(τ, z))
n

2(η(τ))n
, (C.2)

B(2n)
s (τ, z) ≡ (ϑ2(τ, z))

n + (ϑ̃1(τ, z))
n

2(η(τ))n
, (C.3)

B
(2n)
s̄ (τ, z) ≡ (ϑ2(τ, z))

n − (ϑ̃1(τ, z))
n

2(η(τ))n
. (C.4)

Writing them as a column vector B(2n)(τ, z), their modular S- and T -transformations are

given in the matrix notation

B(2n)(τ, z)
∣
∣
∣
S

= e
nπiz2

τ S(2n)B(2n)(τ, z), (C.5)

S(2n) =
1

2








1 1 1 1

1 1 −1 −1

1 −1 i−n −i−n

1 −1 −i−n i−n








(C.6)

and

B(2n)(τ, z)
∣
∣
∣
T

= T (2n)B(2n)(τ, z), (C.7)

T (2n) =









e−
nπi
12

−e−nπi
12

e+
nπi
6

e+
nπi
6









. (C.8)

We also define

B(E8)(τ, z) ≡ (ϑ3(τ, z))
8 + (ϑ4(τ, z))

8 + (ϑ2(τ, z))
8 + (ϑ̃1(τ, z))

8

2(η(τ))8
, (C.9)
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then

B(E8)(τ, z)
∣
∣
∣
S

= e
8πiz2

τ B(E8)(τ, z), (C.10)

B(E8)(τ, z)
∣
∣
∣
T

= e−
8πi
12 B(E8)(τ, z). (C.11)

If we set z = 0, then we find

S(d+8) = S(d+24)= S(d) = MTS(d)M, (C.12)

e−
8
12

πi T (d+8)= T (d+24)=








−1

−1

1

1







T (d)= MTT (d)M, (C.13)

where

M = MT = M−1 =








1

1

−1

−1







. (C.14)

d is the transverse space dimensions (that is, d = 2 for a four-dimensional flat Minkowski

spacetime with a Calabi-Yau threefold, and d = 4 for six-dimensional one with a Calabi-

Yau twofold). Therefore, MB(E8)B(d+8)(τ, 0) and MB(d+24)(τ, 0) transform exactly in the

same manner as B(d)(τ, 0) does under the modular S- and T -transformations. This means

that starting from any modular invariant partition function for type II strings, we can

obtain one for the E8 × E8 heterotic string theory by replacing the left-moving fermion

theta functions as (with all z’s being equal to zero)

(ϑ3)
d
2 + (ϑ4)

d
2

2η
d
2

(= B
(d)
0 ) → (ϑ3)

d+8
2 − (ϑ4)

d+8
2

2η
d+8
2

B(E8) (= B(d+8)
v B(E8)), (C.15)

(ϑ3)
d
2 − (ϑ4)

d
2

2η
d
2

(= B(d)
v ) → (ϑ3)

d+8
2 + (ϑ4)

d+8
2

2η
d+8
2

B(E8), (= B
(d+8)
0 B(E8)), (C.16)

(ϑ2)
d
2 + (ϑ̃1)

d
2

2η
d
2

(= B(d)
s ) → −(ϑ2)

d+8
2 + (ϑ̃1)

d+8
2

2η
d+8
2

B(E8), (= −B(d+8)
s B(E8)), (C.17)

(ϑ2)
d
2 − (ϑ̃1)

d
2

2η
d
2

(= B
(d)
s̄ ) → −(ϑ2)

d+8
2 − (ϑ̃1)

d+8
2

2η
d+8
2

B(E8) (= −B(d+8)
s̄ B(E8)) (C.18)

and also for the SO(32) theory as

(ϑ3)
d
2 + (ϑ4)

d
2

2η
d
2

(= B
(d)
0 ) → (ϑ3)

d+24
2 − (ϑ4)

d+24
2

2η
d+24

2

, (= B(d+24)
v ) (C.19)

(ϑ3)
d
2 − (ϑ4)

d
2

2η
d
2

(= B(d)
v ) → (ϑ3)

d+24
2 + (ϑ4)

d+24
2

2η
d+24

2

, (= B
(d+24)
0 ) (C.20)
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(ϑ2)
d
2 + (ϑ̃1)

d
2

2η
d
2

(= B(d)
s ) → −(ϑ2)

d+24
2 + (ϑ̃1)

d+24
2

2η
d+24

2

, (= −B(d+24)
s ) (C.21)

(ϑ2)
d
2 − (ϑ̃1)

d
2

2η
d
2

(= B
(d)
s̄ ) → −(ϑ2)

d+24
2 − (ϑ̃1)

d+24
2

2η
d+24

2

(= −B(d+24)
s̄ ). (C.22)

Applying these rules in F̂l,2r(τ, z), we obtain

F̂E8×E8
l,2r (τ, z) =

1

2

(

F̂
E8×E8(−)
l,2r (τ, z) + F̂

E8×E8(+)
l,2r (τ, z)

)

, (C.23)

F̂
E8×E8(−)
l,2r (τ, z) ≡

∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)

(

τ,
z

2(k + 4)

)
1

2
Λ̂E8×E8

2 (τ, z),

(C.24)

F̂
E8×E8(+)
l,2r (τ, z)≡

∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)

(

τ,
z

2(k+4)

)
1

2
Λ̂E8×E8

1 (τ, z),

(C.25)
1
2 Λ̂E8×E8

1 (τ, z)

η14(τ)
≡
(

Θ1,1(τ, z)
(

B(10)
v (τ, 0)B

(2)
0 (τ, z) +B

(10)
0 (τ, 0)B(2)

v (τ, z)
)

+Θ0,1(τ, z)
(

B(10)
s (τ, 0)B(2)

s (τ, z) +B
(10)
s̄ (τ, 0)B

(2)
s̄ (τ, z)

))

B(E8)(τ, 0),

(C.26)
1
2 Λ̂E8×E8

2 (τ, z)

η14(τ)
≡
(

Θ0,1(τ, z)
(

B
(10)
0 (τ, 0)B

(2)
0 (τ, z) +B(10)

v (τ, 0)B(2)
v (τ, z)

)

+Θ1,1(τ, z)
(

B(10)
s (τ, 0)B

(2)
s̄ (τ, z) +B

(10)
s̄ (τ, 0)B(2)

s (τ, z)
))

B(E8)(τ, 0),

(C.27)

and

F̂
SO(32)
l,2r (τ, z) =

1

2

(

F̂
SO(32)(−)
l,2r (τ, z) + F̂

SO(32)(+)
l,2r (τ, z)

)

, (C.28)

F̂
SO(32)(−)
l,2r (τ, z) ≡

∑

m∈Z2k

cl2r+4m(τ)Θ−8r−(k+4)4m,4k(k+4)

(

τ,
z

2(k + 4)

)
1

2
Λ̂

SO(32)
2 (τ, z),

(C.29)

F̂
SO(32)(+)
l,2r (τ, z)≡

∑

m∈Z2k

cl2r+4m−2(τ)Θ−8r−(k+4)(4m−2),4k(k+4)

(

τ,
z

2(k+4)

)
1

2
Λ̂

SO(32)
1 (τ, z),

(C.30)

1
2 Λ̂

SO(32)
1 (τ, z)

η14(τ)
≡ Θ1,1(τ, z)

(

B(26)
v (τ, 0)B

(2)
0 (τ, z) +B

(26)
0 (τ, 0)B(2)

v (τ, z)
)

+Θ0,1(τ, z)
(

B(26)
s (τ, 0)B(2)

s (τ, z) +B
(26)
s̄ (τ, 0)B

(2)
s̄ (τ, z)

)

,

(C.31)

1
2 Λ̂

SO(32)
2 (τ, z)

η14(τ)
≡ Θ0,1(τ, z)

(

B
(26)
0 (τ, 0)B

(2)
0 (τ, z) +B(26)

v (τ, 0)B(2)
v (τ, z)

)

+Θ1,1(τ, z)
(

B(26)
s (τ, 0)B

(2)
s̄ (τ, z) +B

(26)
s̄ (τ, 0)B(2)

s (τ, z)
)

. (C.32)
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D. Proof of the regularization formula

In this appendix we prove the regularization formula. Let

f(z, ǫ) ≡ −
∞∑

n=0

e−nǫ

z − n
, (D.1)

then f(z, ǫ) has simple poles at z = n, (n = 0, 1, 2, . . .) with residue −e−nǫ. On the other

hand, the gamma function Γ(−z) has also simple poles at z = n, (n = 0, 1, 2, . . .), and

so do ∂
∂z log(Γ(−z)) at the same locations with residue −1. Therefore, comparing the

singularities, we may write

∂2

∂z2
log(Γ(−z)) =

∞∑

n=0

+1

(z − n)2
+ const. (D.2)

Subtracting

∂

∂z
f(z, ǫ) =

∞∑

n=0

e−nǫ

(z − n)2
(D.3)

from both sides and integrating with respect to z, we find

∂

∂z
log Γ(−z) − f(z, ǫ) = −

∞∑

n=0

1 − e−nǫ

z − n
+ az + b (D.4)

for some constants a and b. The first term is O(ǫ).

To determine a and b, we set z = −1 and z = 2:

f(−1, ǫ) = −eǫ log(1 − e−ǫ), (D.5)

f(−2, ǫ) = −e2ǫ log(1 − e−ǫ) − eǫ, (D.6)

and therefore

−eǫ log(1 − e−ǫ) =
∂

∂z
log Γ(−z)

∣
∣
∣
∣
z=−1

+O(ǫ) − (−a+ b), (D.7)

−e2ǫ log(1 − e−ǫ) − eǫ =
∂

∂z
log Γ(−z)

∣
∣
∣
∣
z=−2

+O(ǫ) − (−2a+ b). (D.8)

ψ(z) ≡ ∂

∂z
log Γ(z) (D.9)

is known as the psi-function (or the dΓ-function), and

∂

∂z
log Γ(−z) = −ψ(−z). (D.10)

The psi-function satisfies the recursion relation

ψ(z + 1) =
1

z
+ ψ(z), (D.11)
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and hence

ψ(2) = ψ(1) + 1

= −C + 1, (D.12)

where

−ψ(1) =
∂

∂z
log Γ(−z)

∣
∣
∣
∣
z=−1

= C (D.13)

is known as Euler’s constant. Using these data, we find

a = O(ǫ), (D.14)

b = log ǫ+ C +O(ǫ) +O(ǫ log ǫ), (D.15)

and obtain the final form of the regularization formula

−
∞∑

n=0

e−nǫ

z − n
= − log ǫ+

∂

∂z
log Γ(−z) − C +O(ǫ) +O(ǫ log ǫ). (D.16)

That this formula is correct can also be confirmed numerically by Mathematica.
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